Todennäköisyys ja statistinen fysiikka, kevät 2014

Last modified by kpjkytol@helsinki_fi on 2024/03/27 10:22

Todennäköisyys ja statistinen fysiikkakevät 2014

Luennoitsijat

Kalle Kytölä
Antti Kemppainen
 

Laajuus

10 op.

Tyyppi

Syventävä opinto

Alustava sisältö

I. Todennäköisyysteoriaa

  • keskeinen raja-arvolause, satunnaiskävely, heikko suppeneminen

II. Statistisen fysiikan satunnaismalleja

  • ferromagnetismin Ising-malli, itseään välttävä polymeeri

III. Jatkuva-aikaisia satunnaisprosesseja

  • Brownin liike, Poisson-prosessi

IV. 2-ulotteisen Ising-mallin ratkaisusta

  • vapaa fermioniesitys siirtomatriisille

V. Termodynaamisia rajoja ja faasitransitioita

  • perkolaatio, Ising-malli, Gibbsin mitat

VI. Otantaa todennäköisyysjakaumista

  • Markov-ketju Monte Carlo -menetelmä

VII. Muita malleja ja viimeaikaisia tuloksia

Esitietovaatimukset

  • perustiedot vektoreista ja matriiseista (esim. Lineaarialgebra ja matriisilaskenta I-II)
  • perustiedot differentiaali- ja integraalilaskennasta useammassa muuttujassa (esim. Vektorianalyysi)
  • perustiedot todennäköisyyslaskennasta (esim. Todennäköisyyslaskenta)

Käytämme kurssilla toisinaan myös

  • joitakin metrisen topologian käsitteitä, jotka sisältyvät esimerkiksi kurssiin Topologia I
  • joitakin mittateorian käsitteitä --- kurssia tukisi esimerkiksi samaan aikaan käyty Mitta ja integraali tai Todennäköisyysteoria

Luentoajat

Viikot 3-9 ja 11-18 ma 12-14 ja to 14-16 salissa B322. Lisäksi laskuharjoituksia 2 viikkotuntia.

Pääsiäisloma 17.-23.4.

Luennot

Periodi 1
Perioditauko
Periodi 2
  • 10.3. Osa III. Jatkuva-aikaisia satunnaisprosesseja (Poisson-prosessi)
  • 13.3 *** VÄLIKOE ***
  • 17.3. Osa III. Jatkuva-aikaisia satunnaisprosesseja (hyppyprosesseja Poisson-presessista, jatkuva-aikainen satunnaiskävely, Isingin mallin Glauber-dynamiikka)
  • 20.3. Osa III. Jatkuva-aikaisia satunnaisprosesseja (prosessien infinitesimaalisista generaattoreista)
  • 24.3. Osa IV. Kaksiulotteisen Ising mallin ratkaisusta (gaussisten satunnaisvektorien Wickin kaava, fermioninen Wickin kaava)
  • 27.3. Osa IV. Kaksiulotteisen Ising mallin ratkaisusta (siirtomatriisi ja fermionit)
  • 31.3. Osa IV. Kaksiulotteisen Ising mallin ratkaisusta (siirtomatriisi ja fermionit)
  • 3.4. Osa IV. Kaksiulotteisen Ising mallin ratkaisusta (siirtomatriisi ja fermionit)
  • 7.4. Osa VI. Otantaa todennäköisyysjakaumista (yleistä otannasta, reaalisten satunnaismuuttujien sämplääminen, Markov ketjut)
  • 10.4. Osa VI. Otantaa todennäköisyysjakaumista (redusoitumattomien jaksottomien Markov ketjujen konvergenssi stationaariseen jakaumaan)
  • 14.4. Osa VI. Otantaa todennäköisyysjakaumista (esimerkkejä Markov-ketju Monte Carlo sämpläämisestä)
  • 17.-23.4. *** Pääsiäisloma ***
  • 24.4. Osa VI. Otantaa todennäköisyysjakaumista (Holleyn kriteeri, Ising malling korrelaatioepäyhtälö ja lisää esimerkkejä sämpläämisestä)
  • 28.4. Osa V. Termodynaamisia rajoja ja faasitransitioita (faasitransitio Isingin mallissa)

Kurssin luennot ovat päättyneet.

Kokeet

Kurssi suoritetaan tentillä tai välikokeilla. Laskuharjoituksista saa lisäpisteitä.

Kirjallisuus

Kurssin päämateriaali on luentomuistiinpanot, jotka laitetaan saataville tälle sivulle.

  • Osa I. Todennäköisyysteoriaa
  • Osa II. Statistisen fysiikan satunnaismalleja
  • Osa III. Jatkuva-aikaisia satunnaisprosesseja
  • ...
Oppikirjoja kurssin eri aihepiireistä

Tämä lista täydentyy myöhemmin. 

  • R. Durrett,  Probability: Theory and Examples
  • G. Grimmett,  Probability on Graphs
  • L. Reichl, A Modern Course in Statistical Physics. Wiley-VCH, 2009.
  • A. Sokal, Monte Carlo methids in statistical mechanics: foundations and new algorithms. Cargèse summer school 1996, Functional integration: basics and applications. Plenum, NY, 1997.

Ilmoittaudu kurssille

Unohditko ilmoittautua? Katso ohjeet täältä!

Laskuharjoitukset

Ryhmä

Päivä

Aika

Paikka

Pitäjä

1.

to

12-14

CK111

Petri Tuisku

Laskuharjoitustehtävät
  1. Harjoitustehtävät, 23.1.2014
  2. Harjoitustehtävät, 30.1.2014
  3. Harjoitustehtävät, 6.2.2014
  4. Harjoitustehtävät, 13.2.2014
  5. Harjoitustehtävät, 20.2.2014
  6. Harjoitustehtävät, 27.2.2014
    • 6.3.2014 perioditauko
    • 13.3.2014 *** VÄLIKOE ***
  7. Harjoitustehtävät, 20.3.21.3., C122 klo 10-12
  8. Harjoitustehtävät, 27.3.
  9. Harjoitustehtävät, 3.4.
  10. Harjoitustehtävät, 10.4.
    • 17.-23.4. *** Pääsiäisloma ***
  11. Harjoitustehtävät, 24.4.

Kurssin laskuharjoitukset ovat päättyneet.