Todennäköisyys ja statistinen fysiikka Probability and statistical physics

Antti Kemppainen <Antti.H.Kemppainen@helsinki.fi> B416, ma 14-15 Kalle Kytölä <Kalle.Kytola@helsinki.fi> A406, to 16-17

Helsingin yliopisto, Matematiikan ja tilastotieteen laitos

kevätlukukausi 2014 periodit III & IV

Kolmogorov's axioms: probability space

a set Ω ("sample space", "set of possible outcomes")
σ-algebra F: collection of subsets of Ω ("events")
(σ-1) Ø ∈ F
(σ-2) E ∈ F ⇒ Ω \ E ∈ F
(σ-2) E_n ∈ F (n ∈ ℕ) ⇒ ∪_{n∈ℕ} E_n ∈ F
probability measure P: F → [0, 1]
(P-1) P[Ω] = 1
(P-2) E_n ∈ F (n ∈ ℕ) disjoint, i.e. E_n ∩ E_m = Ø for n ≠ m ⇒ P[∪_{n∈ℕ} E_n] = ∑_{n∈ℕ} P[E_n]

Kolmogorov's axioms: probability space

• a set
$$\Omega$$
 ("sample space", "set of possible outcomes") \mathfrak{X}
• σ -algebra \mathcal{F} : collection of subsets of Ω ("events") Σ
(σ -1) $\emptyset \in \mathcal{F}$
(σ -2) $E \in \mathcal{F} \Rightarrow \Omega \setminus E \in \mathcal{F}$
(σ -2) $E_n \in \mathcal{F}$ ($n \in \mathbb{N}$) $\Rightarrow \bigcup_{n \in \mathbb{N}} E_n \in \mathcal{F}$
• probability measure $P: \mathcal{F} \to [0, 1]$ $\mu: \Sigma \to [0, +\infty]$
(P-1) $P[\Omega] = 1$ $\mu[\emptyset] = 0$
(P-2) $E_n \in \mathcal{F}$ ($n \in \mathbb{N}$) disjoint, i.e. $E_n \cap E_m = \emptyset$ for $n \neq m \Rightarrow$
 $P[\bigcup_{n \in \mathbb{N}} E_n] = \sum_{n \in \mathbb{N}} P[E_n]$

measure theory, $(\mathfrak{X}, \Sigma, \mu)$	probability theory, (Ω, \mathcal{F}, P)
measurable set, $A \in \Sigma$ $(A \subset \mathfrak{X})$	event, $E \in \mathcal{F} (E \subset \Omega)$
measure, $\mu[A]$	probability, P[<i>E</i>]
measurable function, $f: \mathfrak{X} \rightarrow \mathbb{R}$	random variable, $X: \Omega \to \mathbb{R}$
integral, $\int_{\mathfrak{X}} f \mathrm{d} \mu$	expected value, $E[X]$
a.e. = almost everywhere	a.s. = almost surely

• Indicator \mathbb{I}_E of an event E $\mathbb{I}_E(\omega) = \begin{cases} 1 & \text{if } \omega \in E \\ 0 & \text{if } \omega \notin E \end{cases},$

$$\mathsf{E}[\mathbb{I}_E] = \mathsf{P}[E]$$

• Indicator \mathbb{I}_E of an event E

$$\mathbb{I}_{E}(\omega) = \begin{cases} 1 & \text{if } \omega \in E \\ 0 & \text{if } \omega \notin E \end{cases}, \qquad E[\mathbb{I}_{E}] = P[E] \end{cases}$$

• Simple random variable X (finitely many possible values)

$$X = \sum_{j=1}^{n} x_{j} \mathbb{I}_{E_{j}} \qquad (E_{i} \cap E_{j} = \emptyset \ \forall i \neq j), \qquad \mathsf{E}[X] = \sum_{j=1}^{n} x_{j} \mathsf{P}[E_{j}]$$

• Indicator \mathbb{I}_E of an event E

$$\mathbb{I}_{E}(\omega) = \begin{cases} 1 & \text{if } \omega \in E \\ 0 & \text{if } \omega \notin E \end{cases}, \qquad E[\mathbb{I}_{E}] = P[E] \end{cases}$$

• Simple random variable X (finitely many possible values)

$$X = \sum_{j=1}^{n} x_j \mathbb{I}_{E_j} \qquad (E_i \cap E_j = \emptyset \ \forall i \neq j), \qquad \mathsf{E}[X] = \sum_{j=1}^{n} x_j \mathsf{P}[E_j]$$

 Non-negative random variable X ≥ 0 approximate from below by (X_n)_{n∈ℕ} simple, X_n ∧ X

e.g.
$$X_n = \sum_{j=1}^{4^n-1} \frac{j}{2^n} \mathbb{I}_{\{j2^{-n} \le X < (j+1)2^{-n}\}} + 2^n \mathbb{I}_{\{X \ge 2^n\}}, \quad \mathsf{E}[X] = \lim_{n \to \infty} \mathsf{E}[X_n]$$

• Indicator \mathbb{I}_E of an event E

$$\mathbb{I}_{E}(\omega) = \begin{cases} 1 & \text{if } \omega \in E \\ 0 & \text{if } \omega \notin E \end{cases}, \qquad E[\mathbb{I}_{E}] = P[E] \end{cases}$$

• Simple random variable X (finitely many possible values)

$$X = \sum_{j=1}^{n} x_j \mathbb{I}_{E_j} \qquad (E_i \cap E_j = \emptyset \ \forall i \neq j), \qquad \mathsf{E}[X] = \sum_{j=1}^{n} x_j \mathsf{P}[E_j]$$

 Non-negative random variable X ≥ 0 approximate from below by (X_n)_{n∈ℕ} simple, X_n ≯ X

e.g.
$$X_n = \sum_{j=1}^{4^n-1} \frac{j}{2^n} \mathbb{I}_{\{j2^{-n} \le X < (j+1)2^{-n}\}} + 2^n \mathbb{I}_{\{X \ge 2^n\}}, \quad \mathsf{E}[X] = \lim_{n \to \infty} \mathsf{E}[X_n]$$

• Integrable random variable $X \in L^1(\mathsf{P})$, i.e., $\mathsf{E}[|X|] < \infty$

$$X = X_{+} - X_{-}$$
 with $X_{+}, X_{-} \ge 0$, $E[X] = E[X_{+}] - E[X_{-}]$

Useful results from measure theory

Exchange of limit and integration:

$$\Rightarrow \quad \int_{\mathfrak{X}} (\lim_{n \to \infty} f_n) \, \mathrm{d}\mu = \lim_{n \to \infty} \left(\int_{\mathfrak{X}} f_n \, \mathrm{d}\mu \right)$$

Exchange of limit and integration: $(f_n)_{n \in \mathbb{N}} \operatorname{m}^{\underline{\operatorname{able}}} f^{\underline{\operatorname{tions}}}$ on \mathfrak{X}

• Monotone convergence theorem f_n non-negative, and $f_n \uparrow f$

$$\Rightarrow \quad \int_{\mathfrak{X}} (\lim_{n \to \infty} f_n) \, \mathrm{d}\mu = \lim_{n \to \infty} \left(\int_{\mathfrak{X}} f_n \, \mathrm{d}\mu \right)$$

Exchange of limit and integration: $(f_n)_{n \in \mathbb{N}} \operatorname{m}^{\underline{\operatorname{able}}} f^{\underline{\operatorname{tions}}}$ on \mathfrak{X}

 Exchange of limit and integration: $(f_n)_{n \in \mathbb{N}} \operatorname{m}^{\underline{\operatorname{able}}} f^{\underline{\operatorname{tions}}}$ on \mathfrak{X}

Exchange of order of integrations:

$$\Rightarrow \quad \int_{\mathfrak{X}_1 \times \mathfrak{X}_2} f \, \mathrm{d}(\mu_1 \otimes \mu_2) = \int_{\mathfrak{X}_1} \left(\int_{\mathfrak{X}_2} f(x_1, x_2) \, \mathrm{d}\mu_2(x_2) \right) \mathrm{d}\mu_1(x_1)$$
$$= \int_{\mathfrak{X}_2} \left(\int_{\mathfrak{X}_1} f(x_1, x_2) \, \mathrm{d}\mu_1(x_1) \right) \mathrm{d}\mu_2(x_2)$$

Exchange of limit and integration: $(f_n)_{n \in \mathbb{N}} \mod \mathfrak{X}$

Exchange of order of integrations: $f: \mathfrak{X}_1 \times \mathfrak{X}_2 \to \mathbb{R} \mod \mathfrak{f}^{tion}$ $\mu_1 \text{ and } \mu_2 \text{ two (}\sigma\text{-finite)} \mod \mathfrak{X}_1 \text{ and } \mathfrak{X}_2, \text{ respectively}$ • Fubini's theorem

$$f \ge 0 \quad \text{or} \quad f \in L^{1}(\mu_{1} \otimes \mu_{2})$$

$$\Rightarrow \quad \int_{\mathfrak{X}_{1} \times \mathfrak{X}_{2}} f \, \mathrm{d}(\mu_{1} \otimes \mu_{2}) = \int_{\mathfrak{X}_{1}} \left(\int_{\mathfrak{X}_{2}} f(x_{1}, x_{2}) \, \mathrm{d}\mu_{2}(x_{2}) \right) \mathrm{d}\mu_{1}(x_{1})$$

$$= \int_{\mathfrak{X}_{2}} \left(\int_{\mathfrak{X}_{1}} f(x_{1}, x_{2}) \, \mathrm{d}\mu_{1}(x_{1}) \right) \mathrm{d}\mu_{2}(x_{2})$$

Useful results from measure theory

Fatou's lemma

 (f_n)_{n∈ℕ} non-neg. m^{able} f^{tions} ⇒ ∫(lim inf f_n) ≤ lim inf(∫ f_n)

 Exchange of limit and integration: (f_n)_{n∈ℕ} m^{able} f^{tions} on X
 Monotone convergence theorem

 f_n non-negative, and f_n ↑ f

 Dominated convergence theorem

 |f_n| ≤ g for some g ∈ L¹(µ), and f_n → f
 ⇒ ∫_x (lim f_n) dµ = lim (∫_x f_n dµ)

Exchange of order of integrations: $f: \mathfrak{X}_1 \times \mathfrak{X}_2 \to \mathbb{R} \mod \mathfrak{f}^{\underline{\text{tion}}}$ $\mu_1 \text{ and } \mu_2 \text{ two (}\sigma\text{-finite)} \max \text{ measures on } \mathfrak{X}_1 \text{ and } \mathfrak{X}_2, \text{ respectively} \bullet \text{ Fubini's theorem}$

$$f \ge 0 \quad \text{or} \quad f \in L^{1}(\mu_{1} \otimes \mu_{2})$$

$$\Rightarrow \quad \int_{\mathfrak{X}_{1} \times \mathfrak{X}_{2}} f \, \mathrm{d}(\mu_{1} \otimes \mu_{2}) = \int_{\mathfrak{X}_{1}} \left(\int_{\mathfrak{X}_{2}} f(x_{1}, x_{2}) \, \mathrm{d}\mu_{2}(x_{2}) \right) \mathrm{d}\mu_{1}(x_{1})$$

$$= \int_{\mathfrak{X}_{2}} \left(\int_{\mathfrak{X}_{1}} f(x_{1}, x_{2}) \, \mathrm{d}\mu_{1}(x_{1}) \right) \mathrm{d}\mu_{2}(x_{2})$$

 $\mathbb{R}\text{-valued random variable} \qquad X: \Omega \to \mathbb{R}$

 $\mathbb{R}\text{-valued random variable} \qquad X: \Omega \to \mathbb{R}$ $\underline{\text{Distribution of } X}: \ \mu = \mu_X$ the probability measure on \mathbb{R} given by $\mu[B] = \mathbb{P}[X \in B] \qquad (B \subset \mathbb{R} \text{ Borel set})$

 $\mathbb{R}\text{-valued random variable} \qquad X: \Omega \to \mathbb{R}$ $\underline{\text{Distribution of } X}: \mu = \mu_X$ the probability measure on \mathbb{R} given by $\mu[B] = \mathbb{P}[X \in B] \qquad (B \subset \mathbb{R} \text{ Borel set})$ $\underline{\text{Cumulative distribution function (cdf})}: F = F_X$ $F: \mathbb{R} \to [0, 1] \text{ given by } F(x) = \mathbb{P}[X \leq x]$

 \mathbb{R} -valued random variable $X: \Omega \to \mathbb{R}$ Distribution of X: $\mu = \mu_X$ the probability measure on \mathbb{R} given by $\mu[B] = P[X \in B] \qquad (B \subset \mathbb{R} \text{ Borel set})$ Cumulative distribution function (cdf): $F = F_X$ $F: \mathbb{R} \to [0, 1]$ given by $F(x) = P[X \le x]$ • F is non-decreasing • $F(x) \searrow 0$ as $x \searrow -\infty$, and $F(x) \nearrow 1$ as $x \nearrow +\infty$ • F is right continuous: $F(x) \searrow F(x_0)$ as $x \searrow x_0$

 \mathbb{R} -valued random variable $X: \Omega \to \mathbb{R}$ Distribution of X: $\mu = \mu_X$ the probability measure on \mathbb{R} given by $\mu[B] = P[X \in B] \qquad (B \subset \mathbb{R} \text{ Borel set})$ Cumulative distribution function (cdf): $F = F_X$ $F: \mathbb{R} \to [0, 1]$ given by $F(x) = P[X \le x]$ • F is non-decreasing • $F(x) \searrow 0$ as $x \searrow -\infty$, and $F(x) \nearrow 1$ as $x \nearrow +\infty$ • F is right continuous: $F(x) \searrow F(x_0)$ as $x \searrow x_0$ Characteristic function: $\chi = \chi_X$ $\chi: \mathbb{R} \to \mathbb{C}$ given by $\chi(\theta) = \mathsf{E}[e^{i\theta X}]$

 \mathbb{R} -valued random variable $X: \Omega \to \mathbb{R}$ Distribution of X: $\mu = \mu_X$ the probability measure on \mathbb{R} given by $\mu[B] = P[X \in B]$ $(B \subset \mathbb{R} \text{ Borel set})$ Cumulative distribution function (cdf): $F = F_X$ $F: \mathbb{R} \to [0, 1]$ given by $F(x) = P[X \le x]$ • F is non-decreasing • $F(x) \searrow 0$ as $x \searrow -\infty$, and $F(x) \nearrow 1$ as $x \nearrow +\infty$ • F is right continuous: $F(x) \searrow F(x_0)$ as $x \searrow x_0$ Characteristic function: $\chi = \chi_X$ $\chi: \mathbb{R} \to \mathbb{C}$ given by $\chi(\theta) = \mathsf{E}[e^{i\theta X}]$ • χ is continuous and $\chi(0) = 1$ • $|\chi(\theta)| \le 1$ and $\chi(-\theta) = \chi(\theta)$

Independence: abbreviated \bot

sub- σ -algebras $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \ldots \subset \mathcal{F}$

⊥ iff for all $G_1 \in \mathcal{G}_1$, $G_2 \in \mathcal{G}_2$, ..., $G_n \in \mathcal{G}_n$ we have $P[G_1 \cap G_2 \cap \cdots \cap G_n] = \prod_{j=1}^n P[G_j]$

Independence

sub- σ -algebras $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \ldots \subset \mathcal{F}$

⊥ iff for all $G_1 \in \mathcal{G}_1, G_2 \in \mathcal{G}_2, ..., G_n \in \mathcal{G}_n$ we have $P[G_1 \cap G_2 \cap \cdots \cap G_n] = \prod_{j=1}^n P[G_j]$

random variables X_1, X_2, X_3, \ldots

 ${\rm l\hspace{-.1em l} }$ iff the sigma-algebra generated by them are ${\rm l\hspace{-.1em l} }$

Independence

 $\begin{array}{l} \underline{\mathsf{Independence:}} \ \text{abbreviated} \ \mathbb{I} \\ \hline \\ \mathbf{sub-}\sigma\text{-} \mathbf{algebras} \ \mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \ldots \subset \mathcal{F} \\ \mathbb{I} \ \text{ iff for all } \ \mathcal{G}_1 \in \mathcal{G}_1, \ \mathcal{G}_2 \in \mathcal{G}_2, \ldots, \ \mathcal{G}_n \in \mathcal{G}_n \ \text{we have} \\ & \mathsf{P}[\mathcal{G}_1 \cap \mathcal{G}_2 \cap \cdots \cap \mathcal{G}_n] = \prod_{j=1}^n \mathsf{P}[\mathcal{G}_j] \\ \\ \text{random variables} \ X_1, \ X_2, \ X_3, \ldots \\ & \mathbb{I} \ \text{ iff the sigma-algebra generated by them are } \mathbb{I} \\ \\ \text{events} \ E_1, \ E_2, \ E_3, \ldots \in \mathcal{F} \end{array}$

 ${\rm l\hspace{-.15cm} I}$ iff their indicators are ${\rm l\hspace{-.15cm} I}$