Todennäköisyys ja statistinen fysiikka

Probability and statistical physics

Antti Kemppainen Antti.H.Kemppainen@helsinki.fi B416, ma 14-15 Kalle Kytölä Kalle.Kytola@helsinki.fi A406, to 16-17

Helsingin yliopisto, Matematiikan ja tilastotieteen laitos
kevätlukukausi 2014 periodit III \& IV

Kolmogorov's axioms: probability space

- a set Ω ("sample space", "set of possible outcomes")
- σ-algebra \mathcal{F} : collection of subsets of Ω ("events")
(σ-1) $\varnothing \in \mathcal{F}$
$(\sigma-2) E \in \mathcal{F} \Rightarrow \Omega \backslash E \in \mathcal{F}$
$(\sigma-2) E_{n} \in \mathcal{F}(n \in \mathbb{N}) \Rightarrow \cup_{n \in \mathbb{N}} E_{n} \in \mathcal{F}$
- probability measure $\mathrm{P}: \mathcal{F} \rightarrow[0,1]$
(P-1) $\mathrm{P}[\Omega]=1$
(P-2) $E_{n} \in \mathcal{F}(n \in \mathbb{N})$ disjoint, i.e. $E_{n} \cap E_{m}=\varnothing$ for $n \neq m \Rightarrow$ $\mathrm{P}\left[\cup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \mathrm{P}\left[E_{n}\right]$
probability theory, $(\Omega, \mathcal{F}, \mathrm{P})$
event, $E \in \mathcal{F}(E \subset \Omega)$ probability, $\mathrm{P}[E]$
random variable, $X: \Omega \rightarrow \mathbb{R}$ expected value, $\mathrm{E}[X]$
a.s. $=$ almost surely

Kolmogorov's axioms: probability space

- a set Ω ("sample space", "set of possible outcomes")
- σ-algebra \mathcal{F} : collection of subsets of Ω ("events") Σ

$$
\begin{aligned}
& (\sigma-1) \quad \varnothing \in \mathcal{F} \\
& (\sigma-2) E \in \mathcal{F} \Rightarrow \Omega \backslash E \in \mathcal{F} \\
& (\sigma-2) E_{n} \in \mathcal{F}(n \in \mathbb{N}) \Rightarrow \cup_{n \in \mathbb{N}} E_{n} \in \mathcal{F}
\end{aligned}
$$

- probability measure $\mathrm{P}: \mathcal{F} \rightarrow[0,1]$

$$
\mu: \Sigma \rightarrow[0,+\infty]
$$

(P-1) $\mathrm{P}[\Omega]=1$
(P-2) $E_{n} \in \mathcal{F}(n \in \mathbb{N})$ disjoint, i.e. $E_{n} \cap E_{m}=\varnothing$ for $n \neq m \Rightarrow$

$$
\mathrm{P}\left[\cup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \mathrm{P}\left[E_{n}\right]
$$

measure theory, $(\mathfrak{X}, \Sigma, \mu)$
measurable set, $A \in \Sigma(A \subset \mathfrak{X})$ measure, $\mu[A]$
measurable function, $f: \mathfrak{X} \rightarrow \mathbb{R}$ integral, $\int_{\mathfrak{X}} f \mathrm{~d} \mu$
a.e. $=$ almost everywhere
probability theory, $(\Omega, \mathcal{F}, \mathrm{P})$ event, $E \in \mathcal{F}(E \subset \Omega)$ probability, $\mathrm{P}[E]$ random variable, $X: \Omega \rightarrow \mathbb{R}$ expected value, $\mathrm{E}[X]$
a.s. $=$ almost surely

Expected value: examples/construction

- Indicator \mathbb{I}_{E} of an event E

$$
\mathbb{I}_{E}(\omega)=\left\{\begin{array}{ll}
1 & \text { if } \omega \in E \\
0 & \text { if } \omega \notin E
\end{array}, \quad E\left[\mathbb{I}_{E}\right]=P[E]\right.
$$

Expected value: examples/construction

- Indicator \mathbb{I}_{E} of an event E

$$
\mathbb{I}_{E}(\omega)=\left\{\begin{array}{ll}
1 & \text { if } \omega \in E \\
0 & \text { if } \omega \notin E
\end{array}, \quad \mathrm{E}\left[\mathbb{I}_{E}\right]=\mathrm{P}[E]\right.
$$

- Simple random variable X (finitely many possible values)

$$
X=\sum_{j=1}^{n} x_{j} \mathbb{I}_{E_{j}} \quad\left(E_{i} \cap E_{j}=\varnothing \forall i \neq j\right), \quad \mathrm{E}[X]=\sum_{j=1}^{n} x_{j} \mathrm{P}\left[E_{j}\right]
$$

Expected value: examples/construction

- Indicator \mathbb{I}_{E} of an event E

$$
\mathbb{I}_{E}(\omega)=\left\{\begin{array}{ll}
1 & \text { if } \omega \in E \\
0 & \text { if } \omega \notin E
\end{array}, \quad \mathrm{E}\left[\mathbb{I}_{E}\right]=\mathrm{P}[E]\right.
$$

- Simple random variable X (finitely many possible values)

$$
X=\sum_{j=1}^{n} x_{j} \mathbb{I}_{E_{j}} \quad\left(E_{i} \cap E_{j}=\varnothing \forall i \neq j\right), \quad \mathrm{E}[X]=\sum_{j=1}^{n} x_{j} \mathrm{P}\left[E_{j}\right]
$$

- Non-negative random variable $X \geq 0$ approximate from below by $\left(X_{n}\right)_{n \in \mathbb{N}}$ simple, $X_{n} \nearrow X$
e.g. $X_{n}=\sum_{j=1}^{4^{n}-1} \frac{j}{2^{n}} \mathbb{I}_{\left\{j 2^{-n} \leq X<(j+1) 2^{-n}\right\}}+2^{n} \mathbb{I}_{\left\{X \geq 2^{n}\right\}}, \quad \mathrm{E}[X]=\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right]$

Expected value: examples/construction

- Indicator \mathbb{I}_{E} of an event E

$$
\mathbb{I}_{E}(\omega)=\left\{\begin{array}{ll}
1 & \text { if } \omega \in E \\
0 & \text { if } \omega \notin E
\end{array}, \quad \mathrm{E}\left[\mathbb{I}_{E}\right]=\mathrm{P}[E]\right.
$$

- Simple random variable X (finitely many possible values)

$$
X=\sum_{j=1}^{n} x_{j} \mathbb{I}_{E_{j}} \quad\left(E_{i} \cap E_{j}=\varnothing \forall i \neq j\right), \quad \mathrm{E}[X]=\sum_{j=1}^{n} x_{j} \mathrm{P}\left[E_{j}\right]
$$

- Non-negative random variable $X \geq 0$ approximate from below by $\left(X_{n}\right)_{n \in \mathbb{N}}$ simple, $X_{n} \nearrow X$

$$
\text { e.g. } X_{n}=\sum_{j=1}^{4^{n}-1} \frac{j}{2^{n}} \mathbb{I}_{\left\{j 2^{-n} \leq X<(j+1) 2^{-n}\right\}}+2^{n} \mathbb{I}_{\left\{X \geq 2^{n}\right\}}, \quad \mathrm{E}[X]=\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right]
$$

- Integrable random variable $X \in L^{1}(\mathrm{P})$, i.e., $\mathrm{E}[|X|]<\infty$

$$
X=X_{+}-X_{-} \text {with } X_{+}, X_{-} \geq 0, \quad \mathrm{E}[X]=\mathrm{E}\left[X_{+}\right]-\mathrm{E}\left[X_{-}\right]
$$

Useful results from measure theory

Exchange of limit and integration:

$$
\Rightarrow \quad \int_{\mathfrak{X}}\left(\lim _{n \rightarrow \infty} f_{n}\right) \mathrm{d} \mu=\lim _{n \rightarrow \infty}\left(\int_{\mathfrak{X}} f_{n} \mathrm{~d} \mu\right)
$$

Useful results from measure theory

Exchange of limit and integration: $\left(f_{n}\right)_{n \in \mathbb{N}} \mathrm{~m}$ able ftions on \mathfrak{X}

- Monotone convergence theorem
f_{n} non-negative, and $f_{n} \uparrow f$

$$
\Rightarrow \quad \int_{\mathfrak{X}}\left(\lim _{n \rightarrow \infty} f_{n}\right) \mathrm{d} \mu=\lim _{n \rightarrow \infty}\left(\int_{\mathfrak{X}} f_{n} \mathrm{~d} \mu\right)
$$

Useful results from measure theory

Exchange of limit and integration: $\left(f_{n}\right)_{n \in \mathbb{N}} \mathrm{~m}$ able ftions on \mathfrak{X}

- Monotone convergence theorem
f_{n} non-negative, and $f_{n} \uparrow f$
- Dominated convergence theorem

$$
\begin{aligned}
\left|f_{n}\right| \leq & g \text { for some } g \in L^{1}(\mu) \text {, and } f_{n} \rightarrow f \\
& \Rightarrow \quad \int_{\mathfrak{X}}\left(\lim _{n \rightarrow \infty} f_{n}\right) \mathrm{d} \mu=\lim _{n \rightarrow \infty}\left(\int_{\mathfrak{X}} f_{n} \mathrm{~d} \mu\right)
\end{aligned}
$$

Useful results from measure theory

Exchange of limit and integration: $\left(f_{n}\right)_{n \in \mathbb{N}} m \stackrel{\text { able }}{ }$ flions on \mathfrak{X}

- Monotone convergence theorem

$$
f_{n} \text { non-negative, and } f_{n} \uparrow f
$$

- Dominated convergence theorem

$$
\begin{aligned}
\left|f_{n}\right| \leq & g \text { for some } g \in L^{1}(\mu) \text {, and } f_{n} \rightarrow f \\
& \Rightarrow \quad \int_{\mathfrak{X}}\left(\lim _{n \rightarrow \infty} f_{n}\right) \mathrm{d} \mu=\lim _{n \rightarrow \infty}\left(\int_{\mathfrak{X}} f_{n} \mathrm{~d} \mu\right)
\end{aligned}
$$

Exchange of order of integrations:

$$
\begin{aligned}
\Rightarrow \quad \int_{\mathfrak{X}_{1} \times \mathfrak{X}_{2}} f \mathrm{~d}\left(\mu_{1} \otimes \mu_{2}\right) & =\int_{\mathfrak{X}_{1}}\left(\int_{\mathfrak{X}_{2}} f\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{2}\left(x_{2}\right)\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \\
& =\int_{\mathfrak{X}_{2}}\left(\int_{\mathfrak{X}_{1}} f\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right)\right) \mathrm{d} \mu_{2}\left(x_{2}\right)
\end{aligned}
$$

Useful results from measure theory

Exchange of limit and integration: $\left(f_{n}\right)_{n \in \mathbb{N}} m$ able fitions on \mathfrak{X}

- Monotone convergence theorem

$$
f_{n} \text { non-negative, and } f_{n} \uparrow f
$$

- Dominated convergence theorem

$$
\begin{aligned}
\left|f_{n}\right| & \leq g \text { for some } g \in L^{1}(\mu) \text {, and } f_{n} \rightarrow f \\
& \Rightarrow \int_{\mathfrak{X}}\left(\lim _{n \rightarrow \infty} f_{n}\right) \mathrm{d} \mu=\lim _{n \rightarrow \infty}\left(\int_{\mathfrak{X}} f_{n} \mathrm{~d} \mu\right)
\end{aligned}
$$

Exchange of order of integrations: $f: \mathfrak{X}_{1} \times \mathfrak{X}_{2} \rightarrow \mathbb{R} m$ able fition μ_{1} and μ_{2} two (σ-finite) measures on \mathfrak{X}_{1} and \mathfrak{X}_{2}, respectively

- Fubini's theorem

$$
\begin{aligned}
& f \geq 0 \quad \text { or } \quad f \in L^{1}\left(\mu_{1} \otimes \mu_{2}\right) \\
& \Rightarrow \quad \int_{\mathfrak{X}_{1} \times \mathfrak{X}_{2}} f \mathrm{~d}\left(\mu_{1} \otimes \mu_{2}\right)=\int_{\mathfrak{X}_{1}}\left(\int_{\mathfrak{X}_{2}} f\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{2}\left(x_{2}\right)\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \\
&=\int_{\mathfrak{X}_{2}}\left(\int_{\mathfrak{X}_{1}} f\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right)\right) \mathrm{d} \mu_{2}\left(x_{2}\right)
\end{aligned}
$$

Useful results from measure theory

- Fatou's lemma

$$
\left(f_{n}\right)_{n \in \mathbb{N}} \text { non-neg. mable ftions } \Rightarrow \int\left(\liminf f_{n}\right) \leq \liminf \left(\int f_{n}\right)
$$

Exchange of limit and integration: $\left(f_{n}\right)_{n \in \mathbb{N}}$ mable ftions on \mathfrak{X}

- Monotone convergence theorem
f_{n} non-negative, and $f_{n} \uparrow f$
- Dominated convergence theorem

$$
\begin{aligned}
\left|f_{n}\right| \leq & g \text { for some } g \in L^{1}(\mu) \text {, and } f_{n} \rightarrow f \\
& \Rightarrow \quad \int_{\mathfrak{X}}\left(\lim _{n \rightarrow \infty} f_{n}\right) \mathrm{d} \mu=\lim _{n \rightarrow \infty}\left(\int_{\mathfrak{X}} f_{n} \mathrm{~d} \mu\right)
\end{aligned}
$$

Exchange of order of integrations: $f: \mathfrak{X}_{1} \times \mathfrak{X}_{2} \rightarrow \mathbb{R} m$ able $f^{\text {tion }}$ μ_{1} and μ_{2} two (σ-finite) measures on \mathfrak{X}_{1} and \mathfrak{X}_{2}, respectively

- Fubini's theorem

$$
\begin{aligned}
& f \geq 0 \text { or } \quad f \in L^{1}\left(\mu_{1} \otimes \mu_{2}\right) \\
& \Rightarrow \quad \int_{\mathfrak{X}_{1} \times \mathfrak{X}_{2}} f \mathrm{~d}\left(\mu_{1} \otimes \mu_{2}\right)=\int_{\mathfrak{X}_{1}}\left(\int_{\mathfrak{X}_{2}} f\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{2}\left(x_{2}\right)\right) \mathrm{d} \mu_{1}\left(x_{1}\right) \\
&=\int_{\mathfrak{X}_{2}}\left(\int_{\mathfrak{X}_{1}} f\left(x_{1}, x_{2}\right) \mathrm{d} \mu_{1}\left(x_{1}\right)\right) \mathrm{d} \mu_{2}\left(x_{2}\right)
\end{aligned}
$$

Distribution of real-valued random variable

$$
\mathbb{R} \text {-valued random variable } \quad X: \Omega \rightarrow \mathbb{R}
$$

Distribution of real-valued random variable

$$
\mathbb{R} \text {-valued random variable } \quad X: \Omega \rightarrow \mathbb{R}
$$

Distribution of X : $\mu=\mu_{X}$
the probability measure on \mathbb{R} given by

$$
\mu[B]=P[X \in B] \quad(B \subset \mathbb{R} \text { Borel set })
$$

Distribution of real-valued random variable

$$
\mathbb{R} \text {-valued random variable } \quad X: \Omega \rightarrow \mathbb{R}
$$

Distribution of X : $\mu=\mu_{X}$
the probability measure on \mathbb{R} given by

$$
\mu[B]=P[X \in B] \quad(B \subset \mathbb{R} \text { Borel set })
$$

Cumulative distribution function (cdf): $F=F_{X}$

$$
F: \mathbb{R} \rightarrow[0,1] \text { given by } F(x)=\mathrm{P}[X \leq x]
$$

Distribution of real-valued random variable

$$
\mathbb{R} \text {-valued random variable } \quad X: \Omega \rightarrow \mathbb{R}
$$

Distribution of X : $\mu=\mu_{X}$
the probability measure on \mathbb{R} given by

$$
\mu[B]=P[X \in B] \quad(B \subset \mathbb{R} \text { Borel set })
$$

Cumulative distribution function (cdf): $F=F_{X}$
$F: \mathbb{R} \rightarrow[0,1]$ given by $F(x)=\mathrm{P}[X \leq x]$

- F is non-decreasing
- $F(x) \searrow 0$ as $x \searrow-\infty$, and $F(x) \nmid 1$ as $x \nrightarrow+\infty$
- F is right continuous: $F(x) \searrow F\left(x_{0}\right)$ as $x \searrow x_{0}$

Distribution of real-valued random variable

$$
\mathbb{R} \text {-valued random variable } \quad X: \Omega \rightarrow \mathbb{R}
$$

Distribution of X : $\mu=\mu_{X}$
the probability measure on \mathbb{R} given by

$$
\mu[B]=P[X \in B] \quad(B \subset \mathbb{R} \text { Borel set })
$$

Cumulative distribution function (cdf): $F=F_{X}$
$F: \mathbb{R} \rightarrow[0,1]$ given by $F(x)=\mathrm{P}[X \leq x]$

- F is non-decreasing
- $F(x) \searrow 0$ as $x \searrow-\infty$, and $F(x) \nmid 1$ as $x \nrightarrow+\infty$
- F is right continuous: $F(x) \searrow F\left(x_{0}\right)$ as $x \searrow x_{0}$

Characteristic function: $\chi=\chi x$

$$
\chi: \mathbb{R} \rightarrow \mathbb{C} \text { given by } \chi(\theta)=\mathbb{E}\left[e^{\mathfrak{i} \theta X}\right]
$$

Distribution of real-valued random variable

$$
\mathbb{R} \text {-valued random variable } \quad X: \Omega \rightarrow \mathbb{R}
$$

Distribution of $X: \mu=\mu_{X}$
the probability measure on \mathbb{R} given by

$$
\mu[B]=P[X \in B] \quad(B \subset \mathbb{R} \text { Borel set })
$$

Cumulative distribution function (cdf): $F=F_{X}$
$F: \mathbb{R} \rightarrow[0,1]$ given by $F(x)=\mathrm{P}[X \leq x]$

- F is non-decreasing
- $F(x) \searrow 0$ as $x \searrow-\infty$, and $F(x) \nmid 1$ as $x \nrightarrow+\infty$
- F is right continuous: $F(x) \searrow F\left(x_{0}\right)$ as $x \searrow x_{0}$

Characteristic function: $\chi=\chi x$
$\chi: \mathbb{R} \rightarrow \mathbb{C}$ given by $\chi(\theta)=\mathbb{E}\left[e^{i \theta X}\right]$

- χ is continuous and $\chi(0)=1$
- $|\chi(\theta)| \leq 1$ and $\chi(-\theta)=\overline{\chi(\theta)}$

Independence

Independence: abbreviated \Perp

Independence

Independence: abbreviated \Perp sub- σ-algebras $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}, \ldots \subset \mathcal{F}$
\Perp iff for all $G_{1} \in \mathcal{G}_{1}, G_{2} \in \mathcal{G}_{2}, \ldots, G_{n} \in \mathcal{G}_{n}$ we have $\mathrm{P}\left[G_{1} \cap G_{2} \cap \cdots \cap G_{n}\right]=\prod_{j=1}^{n} \mathrm{P}\left[G_{j}\right]$

Independence

Independence: abbreviated \Perp
sub- σ-algebras $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}, \ldots \subset \mathcal{F}$
\Perp iff for all $G_{1} \in \mathcal{G}_{1}, G_{2} \in \mathcal{G}_{2}, \ldots, G_{n} \in \mathcal{G}_{n}$ we have $\mathrm{P}\left[G_{1} \cap G_{2} \cap \cdots \cap G_{n}\right]=\prod_{j=1}^{n} \mathrm{P}\left[G_{j}\right]$
random variables $X_{1}, X_{2}, X_{3}, \ldots$
\Perp iff the sigma-algebra generated by them are \Perp

Independence

Independence: abbreviated \Perp
sub- σ-algebras $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}, \ldots \subset \mathcal{F}$
\Perp iff for all $G_{1} \in \mathcal{G}_{1}, G_{2} \in \mathcal{G}_{2}, \ldots, G_{n} \in \mathcal{G}_{n}$ we have $\mathrm{P}\left[G_{1} \cap G_{2} \cap \cdots \cap G_{n}\right]=\prod_{j=1}^{n} \mathrm{P}\left[G_{j}\right]$
random variables $X_{1}, X_{2}, X_{3}, \ldots$
\Perp iff the sigma-algebra generated by them are \Perp events $E_{1}, E_{2}, E_{3}, \ldots \in \mathcal{F}$
\Perp iff their indicators are \Perp

