Introduction to mathematical physics, syksy 2010

Last modified by jlukkari@helsinki_fi on 2024/03/27 10:09

Introduction to mathematical physics, fall 2010

Spectral theory

Lecturer

Jani Lukkarinen

Scope

10 cu.

Type

Advanced studies. Very suitable as a continuation of Introduction to functional analysis (Funktionaalianalyysin peruskurssi)

Description

The course focuses on derivation and applications of spectral theory of operators on a Hilbert space. The mathematical topics will include Banach algebras and spectral measures of unbounded operators, and applications will be mainly chosen from physics, in particular, from quantum mechanics

Prerequisites

Basic measure theory and functional analysis

Information
Course announcements
  • The course and the grading are now finished. The marked exams can be collected from the lecturer.
  • problems and lectures can be downloaded from below. For solutions to the problems, please send e-mail to the instructor.

Lectures

Tue 14-16 and Thu 14-16, Exactum room C123. On weeks 36-41, 44, and 46-50

Bibliography

  • Course lecture notes
  • W. Rudin, Functional Analysis, McGraw-Hill, 2nd edition, 1991
  • M. Reed, B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis & II: Fourier Analysis, Self-Adjointness, Academic Press, 1980 & 1975
  • G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, Graduate Studies in Mathematics 99, Amer. Math. Soc., 2009
  • T. Kato, Perturbation Theory for Linear Operators (Classics in Mathematics), Springer, 2008
  • O. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1 & 2, Springer, 2002 & 2002

Registration

Did you forget to register? What to do.

Exercise groups

Group

Day

Time

Place

Instructor

1.

Fri

10-12

C122

Problem sheets

 

Session on

Download

7.

12.11.

8.

19.11.

9.

26.11.

10.

3.12.

11.

10.12.

12.*

(20.12.)

 

Session on

Download

1.

17.9.

2.

24.9.

3.

4.10.

4.

8.10.

5.

15.10.

6.

5.11.

Lecture notes

 

Held on

Download

13.

2.11.

14.

4.11.

15.

16.11.

16.

18.11.

17.

23.11.

18.

25.11.

19.

30.11.

20.

2.12.

21.

7.12.

22.

9.12.

23.*

(14.12.)

 

Held on

Download

1. & 2.

7. & 9.9.

3.

14.9.

4.

16.9.

5.

21.9.

6.

23.9.

7.

28.9.

8.

30.9.

9.

5.10.

10.

7.10.

11.

12.10.

12.

14.10.