
Introduction to Mathematical Physics: Homework set 6
Spectral Theory 5. Nov 2010

There will be no lectures nor exercises on weeks 42 and 43, and therefore you will
have three weeks to finish these exercises. Next lecture is on Tuesday 2nd November.

Exercise 1

Prove Theorem 7.1 in the lecture notes. (Hint: The point of the exercise is to go through
and fill in the details of the proof given in Rudin’s Functional Analysis book.)

Exercise 2 (Absorbing sets)

Let X be a vector space. Then A ⊂ X is called absorbing if for all x ∈ X there is t > 0 for
which x ∈ tA. Prove that if A is absorbing, then 0 ∈ A, and that if V is a topological vector
space and V is a neighborhood of 0, then V is absorbing.

Exercises 3 & 4 (Seminorms)

Let X be a vector space. A function p : X → R is called a seminorm if it satisfies

(i) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X,
(ii) p(αx) = |α|p(x) for all x ∈ X and α ∈ K.

Prove that then

(a) p(0) = 0 and |p(x)− p(y)| ≤ p(x− y) for all x, y ∈ X
(b) p(x) ≥ 0 for all x ∈ X
(c) p is a norm if and only if p(x) 6= 0 for all x 6= 0

(d) N := {x ∈ X | p(x) = 0} is a subspace of X, and there is a unique norm ‖·‖ on X/N
for which ‖πN (x)‖ = p(x) for all x ∈ X

(e) The set B := {x ∈ X | p(x) < 1} is convex, balanced, and absorbing.

Exercises 5 & 6 (Minkowski functional)

Let X be a vector space, and consider A ⊂ X which is convex and absorbing . Then the map
µA : X → R defined by

µA(x) := inf
{
t > 0

∣∣ t−1x ∈ A} , x ∈ X ,

is called the Minkowski functional of A. (Since A is absorbing, µA(x) is always well-defined
and non-negative.) Prove that then all of the following statements hold.

(a) µA(x+ y) ≤ µA(x) + µA(y) for all x, y ∈ X
(b) µA(tx) = tµA(x) for all x ∈ X and t ≥ 0

(c) µA is a seminorm if A is also balanced
(d) Set A0 := {x ∈ X |µA(x) < 1} and A1 := {x ∈ X |µA(x) ≤ 1}. Show that then A0 and

A1 are convex and absorbing, A0 ⊂ A ⊂ A1, and µA0 = µA = µA1 .
(e) If p is a seminorm on X, then p = µB for the set B defined in item (e) in Exercise 3.

Exercise 7

Let F1 and F2 be F-spaces, with compatible invariant metrics d1 and d2, respectively. Show
that d((x1, x2), (y1, y2)) := d1(x1, y1) + d2(x2, y2) defines an invariant metric on F1 × F2

which is compatible with its product topology. Show that F1 ×F2 is an F-space.

(Please turn over!)



Exercise 8

Let N ∈ N+ and assume Bn, n = 0, 1, . . . , N are Banach spaces. Show that a multilinear
map T :

∏N
n=1 Bn → B0 is jointly continuous if and only if it is separately continuous, and

that in this case there isM ≥ 0 such that ‖T (x1, x2, . . . , xN )‖ ≤M
∏N

n=1‖xn‖ for any choice
of xn ∈ Bn, n = 1, . . . , N . (Hint: Induction in N .)

Exercise 9

(a) Let V1 and V2 be topological vector spaces, and suppose that for each n ∈ N+ there is
given a linear map Λn : V1 → V2 such that the sequence (Λn) is equicontinuous. Define
E as the collection of all points x ∈ V1 for which (Λnx) forms a topological Cauchy
sequence. Prove that E is a closed subspace of V1.

(b) Assume, in addition, that V2 is an F-space and that there is D ⊂ V1 such that D is
dense, and (Λnx) converges for every x ∈ D. Prove that then Λ(x) := limn→∞ Λnx

exists for all x ∈ V1, and that the map Λ : V1 → V2 is continuous and linear.

Exercises 10 & 11

Let h be a Hilbert space, and consider the standard Fock space generated by it: define

H0 = C, H1 = h, and HN =
N⊗

n=1
h, for N = 2, 3, . . ., and then set F :=

∞⊕
n=0
HN . Consider

some fixed g ∈ h.

(a) For N ∈ N+ prove that there is a unique continuous linear map aN : HN → HN−1 with

aN
(
⊗N

n=1ψn

)
=
√
N(g, ψ1)h ⊗N

n=2 ψn , for all ψ ∈ hN :=
∏N

n=1 h .

(Hint: Theorem 2.17 and Exercise 5.3. Recall that for any non-zero f ∈ h there is an
orthonormal basis of h which contains f/‖f‖.)

(b) Show that D0 :=
{

Ψ ∈ F
∣∣∑∞

N=0N‖ΨN‖2 <∞
}
is a dense subspace of F which con-

tains the vacuum vector Ω = (1, 0, 0, . . .).
(c) Prove that the equation (aΨ)N = aN+1ΨN+1, N = 0, 1, . . ., defines an operator D0 →

F , and that this operator is unbounded if g 6= 0. Compute aΩ.
(d) Show that there is a unique continuous linear map cN : HN → HN+1 with

cN
(
⊗N

n=1ψn

)
=
√
N + 1 g ⊗ ψ1 ⊗ · · · ⊗ ψN , for all ψ ∈ hN ,

for any choice of N = 0, 1, . . . . Prove that if we set (cΨ)0 = 0 and (cΨ)N = cN−1ΨN−1,
for N ∈ N+, then c is an operator D0 → F which is unbounded if g 6= 0. Compute cΩ.

a = a(g) is called the annihilation operator related to g on F and c = c(g) is called the
creation operator related to g.

Recall the fermionic Fock space defined after Proposition 2.21: F (−) =
⊕∞

N=0H
(−)
N , where

H(−)
N is the totally antisymmetric subspace of HN . As before, let P (−)

N denote the orthogonal
projection onto H(−)

N , and consider some fixed g ∈ h. The following statements show that the
fermionic creation and annihilation operators, defined by restricting a(g) and c(g) to F (−),
are actually bounded operators.

(e) Show that the formulae (P (−)Ψ)0 := Ψ0, (P (−)Ψ)N := P
(−)
N ΨN , for N ∈ N+, define an

orthogonal projection P (−) : F → F onto F (−).
(f) Prove that D− := D0 ∩F (−) is a dense subspace of F (−), and consider the restrictions

of a(g) and c(g) to F (−), i.e., the maps ã := P (−)a(g)|D− and c̃ := P (−)c(g)|D− . Show
that there are unique a−(g), c−(g) ∈ B(F (−)) such that a−(g)|D− = ã, c−(g)|D− = c̃,
and that then ‖a−(g)‖ = ‖g‖h = ‖c−(g)‖. (Hint: What happens to P (−)

N (⊗N
n=1ψn

)
, if

ψi = ψj for some i 6= j?)
(g) Show that c−(g) is the adjoint of a−(g). (In this context, usually denoted by a∗−(g).)


