Introduction to Mathematical Physics: Spectral Theory

The exam is planned to be held in the first general examination session of the department, which is on Friday 17.12. between 8:30–12:30. If you need the study credits from the course, but cannot come to this exam, please send e-mail to the lecturer as soon as possible. The exact date will be fixed on Thursday 2.12.

Exercise 1

- (a) Consider Banach spaces \mathcal{B}_1 , \mathcal{B}_2 , and an open subset $\Omega \subset \mathcal{B}_1$. Suppose $f : \Omega \to \mathcal{B}_2$ is Fréchet differentiable at $a \in \Omega$, with a Fréchet derivative $T_a \in \mathcal{B}(\mathcal{B}_1, \mathcal{B}_2)$. Show that f is continuous at a and that the Fréchet derivative is unique.
- (b) Assume $\Omega \subset \mathbb{C}$ is open, \mathcal{B} is a complex Banach space, and $f : \Omega \to \mathcal{B}$ is strongly holomorphic. Let f' denote the derivative of f. Consider some $a \in \Omega$ and define $T_a : \mathbb{C} \to \mathcal{B}$ by $T_a(\alpha) := \alpha f'(a)$. Show that T_a is the Fréchet derivative of f at a.

Exercise 2

Assume K is a nonempty compact Hausdorff space, and let C(K) denote the collection of continuous functions $K \to \mathbb{C}$, with the standard definition of addition and scalar multiplication. For $f \in C(K)$ let $||f|| := \sup_{x \in K} |f(x)|$, and define multiplication by (fg)(x) := f(x)g(x)for $f, g \in C(K)$. Show that these definitions make C(K) into a Banach algebra which is *commutative*: fg = gf for all $f, g \in C(K)$.

Exercise 3

Fundamental theorem of calculus for vector valued integrals:

Suppose \mathcal{B} is a Banach space and $f: [0,T] \to \mathcal{B}$ is continuous, for some T > 0. By 15.3., we can then define $F: [0,T] \to \mathcal{B}$ through the vector valued integral

$$F(t) := \int_0^t \mathrm{d}s \, f(s) \,, \quad t \in [0, T] \,.$$

Show that F is continuous, and that for any $t \in (0, T)$

$$F'(t) := \lim_{s \to t} \frac{1}{t-s} (F(t) - F(s)) = f(t).$$

(Thus F is continuously differentiable.)

(Please turn over!)

Exercise 4

Assume $\Omega \subset \mathbb{C}$ is open, \mathcal{F} is a complex Fréchet space, and $f : \Omega \to \mathcal{F}$ is strongly holomorphic. Let $f' : \Omega \to \mathcal{F}$ denote the derivative of f.

- (a) Show that f' is strongly holomorphic on Ω .
- (b) Therefore, we can iteratively define strongly holomorphic functions $f^{(n)} : \Omega \to \mathcal{F}$, $n = 0, 1, \ldots$, by the formula $f^{(n)}(z) := \frac{\mathrm{d}}{\mathrm{d}z} f^{(n-1)}(z)$, $n \in \mathbb{N}_+$, with $f^{(0)} := f$. Show that $\Lambda \circ f^{(n)} = \frac{\mathrm{d}^n}{\mathrm{d}^n z} (\Lambda \circ f)$ for any $\Lambda \in \mathcal{F}^*$ and $n \in \mathbb{N}_+$.
- (c) Consider some $z_0 \in \Omega$, and the closed path $\gamma : [0, 2\pi] \to \Omega$ defined by $\gamma(t) := z_0 + \varepsilon e^{it}$ for such a small $\varepsilon > 0$ that the closed ball $\overline{B(z_0, \varepsilon)} \subset \Omega$. (In other words, γ is a positively oriented circle around z_0 with so small radius that the corresponding closed disc belongs to Ω .) Show that for any $n = 0, 1, \ldots$,

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{\gamma} d\zeta \, \frac{1}{(\zeta - z_0)^{n+1}} f(\zeta) \, .$$

(Hint: Theorem 15.8.)

Exercise 5

Suppose \mathcal{B} is a Banach space and μ is a bounded positive Borel measure on a compact Hausdorff space Q. Consider a sequence $f_n : Q \to \mathcal{B}, n \in \mathbb{N}_+$, of continuous functions which satisfy

$$\sum_{n=1}^{\infty} \int_{Q} \mu(\mathrm{d}x) \left\| f_n(x) \right\| < \infty \,.$$

Conclude that $g(x) := \sum_{n=1}^{\infty} f_n(x)$ is absolutely summable for almost every $x \in Q$ (with respect to μ), and define g(x) = 0 for all other $x \in Q$. Show that g is weakly integrable and that in norm

$$\sum_{n=1}^{N} \int_{Q} \mu(\mathrm{d}x) f_{n}(x) \xrightarrow{N \to \infty} \int_{Q} \mu(\mathrm{d}x) g(x) = \int_{Q} \mu(\mathrm{d}x) \sum_{n=1}^{\infty} f_{n}(x) \,,$$

where all integrals are understood in the sense of vector valued integrals. (Hint: Dominated convergence. Note that you cannot assume that g is continuous, so part of the exercise is to prove the existence of $\int_{Q} d\mu g$.)