Exercise 1

Let $J \in \mathbb{C}^{d \times d}$ be a simple "Jordan block" matrix, i.e., define $J_{i j}=\mathbb{1}(j=i+1)$ for all $i, j=1,2, \ldots, d$. Consider an arbitrary integer $n \geq 0$, and show that
(a) $\left(J^{n}\right)_{i j}=\mathbb{1}(j=i+n)$, for all $i, j=1,2, \ldots, d$
(b) $\left\|J^{n}\right\|=\mathbb{1}(n<d)$

Exercise 2

Consider a block matrix $M=\left(\begin{array}{cc}B_{1} & 0 \\ 0 & B_{2}\end{array}\right) \in \mathbb{C}^{d \times d}$, where $B_{1} \in C^{n \times n}$ and $B_{2} \in C^{(d-n) \times(d-n)}$ for some $1 \leq n<d$. Show that $\|M\|=\max \left(\left\|B_{1}\right\|,\left\|B_{2}\right\|\right)$.

Exercise 3

Let $M \in \mathbb{C}^{d \times d}$. Show that the sum in

$$
\mathrm{e}^{M}:=\sum_{n=0}^{\infty} \frac{1}{n!} M^{n}
$$

is absolutely convergent and $\left\|\mathrm{e}^{M}\right\| \leq \mathrm{e}^{\|M\|}$. (Reminder: $M^{0}=1$ in such sums.)

Exercise 4

Assume $A, B \in \mathbb{C}^{d \times d}$ commute, $A B=B A$. Show that then
(a) $(A+B)^{n}=\sum_{k=0}^{n}\binom{n}{k} A^{n-k} B^{k}$, for any $n \in \mathbb{N}_{+}\left(\right.$here $\left.\binom{n}{k}=\frac{n!}{k!(n-k)!}\right)$
(b) $\mathrm{e}^{A+B}=\mathrm{e}^{A} \mathrm{e}^{B}$

Exercise 5

Consider a map $t \mapsto M(t)$ from an interval $\left(t_{1}, t_{2}\right) \subset \mathbb{R}$ to $\mathbb{C}^{d \times d}$. Suppose $t_{0} \in\left(t_{1}, t_{2}\right)$ is such that $M(t)$ is differentiable at t_{0} (with derivative $M^{\prime}\left(t_{0}\right)$), $M(t)$ is invertible for all t, and $t \mapsto M(t)^{-1}$ is continuous at t_{0}. Show that then

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} M(t)^{-1}\right|_{t=t_{0}}=-M\left(t_{0}\right)^{-1} M^{\prime}\left(t_{0}\right) M\left(t_{0}\right)^{-1}
$$

Exercise 6

Consider an arbitrary $M \in \mathbb{C}^{d \times d}$. Suppose that in its Jordan normal form decomposition, its eigenvalues are $\lambda \in \sigma(M)$ and it has $N \geq 1$ blocks with block sizes $d_{n}, n=1, \ldots, N$. Define $\alpha=\max _{\lambda \in \sigma(M)}(\operatorname{Re} \lambda)$ and $\bar{d}=\max _{n} d_{n}$. Show that there is $C \geq 1$ such that for all $t \geq 0$
(a) $\left\|\mathrm{e}^{t M}\right\| \leq C \mathrm{e}^{t(\alpha+1)}$
(b) $\left\|\mathrm{e}^{t M}\right\| \leq C(1+t)^{\bar{d}-1} \mathrm{e}^{t \alpha}$
(If $\alpha<0$, these bounds can be much better than the one following from Exercise 3.)

