Introduction to Mathematical Physics: Spectral Theory

Homework set 1 Friday 17. Sep 2010

Exercise 1

Let $J \in \mathbb{C}^{d \times d}$ be a simple "Jordan block" matrix, i.e., define $J_{ij} = \mathbb{1}(j = i + 1)$ for all $i, j = 1, 2, \ldots, d$. Consider an arbitrary integer $n \ge 0$, and show that

- (a) $(J^n)_{ij} = \mathbb{1}(j = i + n)$, for all $i, j = 1, 2, \dots, d$
- (b) $||J^n|| = \mathbb{1}(n < d)$

Exercise 2

Consider a block matrix $M = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix} \in \mathbb{C}^{d \times d}$, where $B_1 \in C^{n \times n}$ and $B_2 \in C^{(d-n) \times (d-n)}$ for some $1 \le n < d$. Show that $||M|| = \max(||B_1||, ||B_2||)$.

Exercise 3

Let $M \in \mathbb{C}^{d \times d}$. Show that the sum in

$$\mathbf{e}^M := \sum_{n=0}^{\infty} \frac{1}{n!} M^n$$

is absolutely convergent and $\|\mathbf{e}^M\| \le \mathbf{e}^{\|M\|}$. (Reminder: $M^0 = 1$ in such sums.)

Exercise 4

Assume $A, B \in \mathbb{C}^{d \times d}$ commute, AB = BA. Show that then

(a) $(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^{n-k} B^k$, for any $n \in \mathbb{N}_+$ (here $\binom{n}{k} = \frac{n!}{k!(n-k)!}$) (b) $e^{A+B} = e^A e^B$

Exercise 5

Consider a map $t \mapsto M(t)$ from an interval $(t_1, t_2) \subset \mathbb{R}$ to $\mathbb{C}^{d \times d}$. Suppose $t_0 \in (t_1, t_2)$ is such that M(t) is differentiable at t_0 (with derivative $M'(t_0)$), M(t) is invertible for all t, and $t \mapsto M(t)^{-1}$ is continuous at t_0 . Show that then

$$\frac{\mathrm{d}}{\mathrm{d}t}M(t)^{-1}\Big|_{t=t_0} = -M(t_0)^{-1}M'(t_0)M(t_0)^{-1}.$$

Exercise 6

Consider an arbitrary $M \in \mathbb{C}^{d \times d}$. Suppose that in its Jordan normal form decomposition, its eigenvalues are $\lambda \in \sigma(M)$ and it has $N \geq 1$ blocks with block sizes d_n , $n = 1, \ldots, N$. Define $\alpha = \max_{\lambda \in \sigma(M)} (\operatorname{Re} \lambda)$ and $\overline{d} = \max_n d_n$. Show that there is $C \geq 1$ such that for all $t \geq 0$

(a)
$$\|e^{tM}\| < Ce^{t(\alpha+1)}$$

(b) $\|\mathbf{e}^{tM}\| \le C(1+t)^{\bar{d}-1}\mathbf{e}^{t\alpha}$

(If $\alpha < 0$, these bounds can be much better than the one following from Exercise 3.)