Introduction to Mathematical Physics: Spectral Theory

Homework set 5 Friday 15. Oct 2010

Exercise 1

Let \mathcal{V}_1 and \mathcal{V}_2 be normed spaces, and consider a linear map $\Lambda : \mathcal{V}_1 \to \mathcal{V}_2$. Show that the previous and the new definition of Λ being "bounded" coincide: show that $\Lambda(E)$ is bounded for every bounded $E \subset \mathcal{V}_1$ if and only if $\|\Lambda\| := \sup \{\|\Lambda x\| \mid x \in \mathcal{V}_1, \|x\| = 1\} < \infty$. (By Theorem 8.3 this proves that $\mathcal{B}(\mathcal{H})$ is equal to the collection of continuous linear transformations of \mathcal{H} .)

Exercise 2

- (a) Suppose d_1 and d_2 are *invariant* metrics on a vector space X, and that they induce the same topology on X. Prove that then d_1 and d_2 have the same Cauchy sequences and that X is complete with respect to d_1 if and only if it is complete with respect to d_2 .
- (b) Find a metric d_2 on \mathbb{R} such that it induces the standard topology, but for which \mathbb{R} is not complete with respect to d_2 . (Hint: The map $\phi(x) = x/(1 + |x|)$ might become handy.)

Exercise 3

Continuous extensions of densely defined linear maps:

- (a) Let \mathcal{V} and \mathcal{F} be topological vector spaces, and assume that \mathcal{F} is an F-space. Suppose M is a dense subspace of \mathcal{V} , and $\Lambda : M \to \mathcal{F}$ is continuous and linear. Show that Λ has a unique continuous extension to a linear map $\overline{\Lambda} : \mathcal{V} \to \mathcal{F}$. (Hint: Start by showing that there is a sequence $(V_n)_{n \in \mathbb{N}_+}$ of neighborhoods of zero in \mathcal{V} such that each V_n is balanced, $V_n + V_n \subset V_{n-1}$, and $d(0, \Lambda x) < 2^{-n}$ for all $x \in M \cap V_n$. Then for any $x \in \mathcal{V}$ you can choose $x_n \in (x + V_n) \cap M$. Show that the sequence (Λx_n) is Cauchy and that the limit point is independent of the choice of x_n .)
- (b) Let \mathcal{H} be a Hilbert space, and D be its dense subspace. Suppose $A: D \to \mathcal{H}$ is linear and satisfies $||A|| < \infty$. Show that there is a unique operator $\overline{A} \in \mathcal{B}(\mathcal{H})$ for which $\overline{A}\psi = A\psi$ for all $\psi \in D$, and that $||\overline{A}|| = ||A||$. This proves that every densely defined bounded operator on a Hilbert space has a unique extension in $\mathcal{B}(\mathcal{H})$. (Hint: (a).)

(Please turn over!)

Exercise 4

Assume that all of the following conditions hold:

- (a) \mathcal{V} and \mathcal{V}' are topological vector spaces.
- (b) $\Lambda: \mathcal{V} \to \mathcal{V}'$ is linear.
- (c) N is a closed subspace of \mathcal{V} , and let $\pi: \mathcal{V} \to \mathcal{V}/N$ denote the related quotient map.
- (d) $\Lambda x = 0$ for all $x \in N$.

Show that then there is unique $f: \mathcal{V}/N \to \mathcal{V}'$ satisfying $\Lambda = f \circ \pi$. Prove that this f is linear. Show that f is continuous if and only if Λ is continuous, and that f is open if and only if Λ is open. (This shows that it is fairly harmless to "divide out" the kernel of a continuous linear map between topological vector spaces.)

Exercise 5

Let \mathcal{H} be a Hilbert space, and suppose N is its closed subspace. Show that there is a scalar product on \mathcal{H}/N , compatible with its quotient norm, such that $\mathcal{H}/N \cong N^{\perp}$. (This implies that \mathcal{H}/N with its quotient topology is not only a Banach, but also a Hilbert space.)