Introduction to Mathematical Physics: Spectral Theory

Homework set 4 Friday 8. Oct 2010

Exercise 1

Prove that, if A is a subset of a vector space, then $2A \subset A + A$. Find $A \subset \mathbb{R}$ such that $2A \neq A + A$.

Exercise 2

Let \mathcal{V} be a normed space (endowed with its norm topology).

- (a) Show that $A \subset \mathcal{V}$ is topologically bounded if and only if there is M > 0 such that $||x|| \leq M$ for all $x \in A$.
- (b) Show that \mathcal{V} is a locally convex and locally bounded topological vector space.

Exercise 3

Let \mathcal{H} be a Hilbert space. Show that $\mathcal{B}(\mathcal{H})$, endowed with its weak operator topology, is a topological vector space. (Hint: Sometimes it is best to go back to definitions. Note that you cannot assume that the topology is metrizable.)

Exercise 4

Let \mathcal{V} be a topological vector space. For any $A \subset \mathcal{V}$, let \overline{A} denote the closure of A, and A° denote the interior of A. Prove all of the following statements.

- (a) If $A \subset \mathcal{V}$ is *convex*, then so are \overline{A} and A° .
- (b) If $A \subset \mathcal{V}$ is balanced, then so is \overline{A} . If, in addition, $0 \in A^{\circ}$, then A° is balanced.
- (c) If $A \subset \mathcal{V}$ is bounded, then so is \overline{A} . (Hint: Corollary 4.9.)

(Please turn over!)

Exercise 5

Let X be a vector space. For any collection of $n \in \mathbb{N}_+$ vectors $x_i \in X$, i = 1, 2, ..., n, the vector $y \in X$ is a *convex combination* of (x_i) if there are $t_i \ge 0$, i = 1, 2, ..., n, such that

$$y = \sum_{i=1}^{n} t_i x_i$$
, and $\sum_{i=1}^{n} t_i = 1$.

The *convex hull* of $A \subset X$ is defined as

 $Hull(A) := \{ y \in X \mid y \text{ is a convex combination of vectors in } A \} .$

Here y is a convex combination with n = 1 if and only if $y \in A$. Thus always $A \subset Hull(A)$.

- (a) What is $\text{Hull}(A) \subset \mathbb{R}^2$, for $A = \{0, \hat{e}_1, \hat{e}_2\}$ and for $A = \{0, \hat{e}_1, 2\hat{e}_1\}$? (Try to depict the sets.)
- (b) Prove that Hull(A) is convex, and that it is equal to the intersection of all convex sets which contain A.
- (c) Assume $A \subset \mathcal{V}$, where \mathcal{V} is a topological vector space and A is open. Show that Hull(A) is open.
- (d) Assume $A \subset \mathcal{V}$, where \mathcal{V} is a *locally convex* topological vector space and A is bounded. Show that Hull(A) is bounded.