Exercise 1

Let \mathcal{V}_{1} and \mathcal{V}_{2} be normed spaces. Define

$$
\mathcal{B}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right):=\left\{T: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2} \mid T \text { is linear and continuous }\right\}
$$

(a) Show that a linear map $T: \mathcal{V}_{1} \rightarrow \mathcal{V}_{2}$ belongs to $\mathcal{B}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ if and only if $\|T\|<\infty$, where

$$
\|T\|:=\sup _{x \in \mathcal{V}_{1},\|x\| \leq 1}\|T x\| .
$$

(b) Prove that $\mathcal{B}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ is a vector space and $T \mapsto\|T\|$ defines a norm on it.
(c) Show that, if \mathcal{V}_{2} is a Banach space, then $\mathcal{B}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ is a Banach space.

Exercise 2

Consider a normed space \mathcal{V} and its dual space \mathcal{V}^{*}. For every $\Lambda \in \mathcal{V}^{*}$ define

$$
\|\Lambda\|:=\sup _{x \in \mathcal{V},\|x\| \leq 1}|\Lambda x| .
$$

Conclude that $\Lambda \mapsto\|\Lambda\|$ makes \mathcal{V}^{*} into a Banach space. Set

$$
B^{*}:=\left\{\Lambda \in \mathcal{V}^{*} \mid\|\Lambda\| \leq 1\right\}
$$

and recall the notation f_{x} for the map $f_{x}(\Lambda)=\Lambda(x)$ and that by Proposition 13.10 each f_{x} is a linear functional on \mathcal{V}^{*}.
(a) Show that $\|x\|=\sup _{\Lambda \in B^{*}}|\Lambda x|$, for any $x \in \mathcal{V}$.
(b) Show that every f_{x} is norm-continuous, and $\left\|f_{x}\right\|=\|x\|$.
(c) Show that B^{*} is weak*-compact.

In addition, prove that if \mathcal{V}_{1} and \mathcal{V}_{2} are normed spaces and $T \in \mathcal{B}\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$, then

$$
\|T\|=\sup \left\{|\Lambda(T x)| \mid x \in \mathcal{V}_{1}, \Lambda \in\left(\mathcal{V}_{2}\right)^{*},\|x\| \leq 1,\|\Lambda\| \leq 1\right\}
$$

Exercise 3

(a) Suppose \mathcal{T}_{1} is a Hausdorff topology on a set X, and \mathcal{T}_{2} is a topology on X under which X is compact. Show that if $\mathcal{T}_{1} \subset \mathcal{T}_{2}$ then $\mathcal{T}_{1}=\mathcal{T}_{2}$. (Hint: Consider closed sets.)
(b) Consider a set X with a topology \mathcal{T}_{X} under which X is compact. Suppose there is a sequence $f_{n}: X \rightarrow \mathbb{R}, n \in \mathbb{N}_{+}$, of continuous functions such that it separates points on X (meaning that for any $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ there is n such that $f_{n}\left(x_{1}\right) \neq f_{n}\left(x_{2}\right)$). Set $c_{n}:=1+\sup _{x \in X}\left|f_{n}(x)\right|$ and show that the formula

$$
d(x, y):=\sum_{n=1}^{\infty} 2^{-n} \frac{1}{c_{n}}\left|f_{n}(x)-f_{n}(y)\right|, \quad x, y \in X
$$

defines a metric on X which induces \mathcal{T}_{X}. (Thus \mathcal{T}_{X} is then metrizable.)

Exercise 4

Consider the fermionic Fock space $\mathcal{F}^{(-)}$generated by a one-particle Hilbert space \mathfrak{h}, and the corresponding creation and annihilation operators $a_{-}^{*}(g)$, and $a_{-}(g), g \in \mathfrak{h}$, as defined in Exercise 6.10. Let also \mathcal{F} denote the full Fock space, with a vacuum vector Ω, and $P^{(-)}$the orthogonal projection onto $\mathcal{F}^{(-)}$. Prove the following statements.
(a) Consider some $N \in \mathbb{N}_{+}$and $f_{i} \in \mathfrak{h}, i=1, \ldots, N$, and define the vector $\Psi \in \mathcal{F}$ by $\Psi_{N}=f_{1} \otimes \cdots \otimes f_{N}$ and $\Psi_{n}=0$ for $n \neq N$. Show that then

$$
P^{(-)} \Psi=(N!)^{-1 / 2} a_{-}^{*}\left(f_{1}\right) \cdots a_{-}^{*}\left(f_{N}\right) \Omega .
$$

(b) Show that for all $f, g \in \mathfrak{h}$, the canonical anticommutation relations hold:

$$
\begin{aligned}
& a_{-}^{*}(f) a_{-}^{*}(g)=-a_{-}^{*}(g) a_{-}^{*}(f), \quad a_{-}(f) a_{-}(g)=-a_{-}(g) a_{-}(f), \quad \text { and } \\
& \left.a_{-}(f) a_{-}^{*}(g)=-a_{-}^{*}(g) a_{-}(f)+(f, g)\right)_{\mathfrak{h}} 1
\end{aligned}
$$

(c) Let $\left(e_{i}\right)_{i \in I}$ be an orthonormal basis of \mathfrak{h}. Show that the vectors $a_{-}^{*}\left(e_{i_{1}}\right) \cdots a_{-}^{*}\left(e_{i_{N}}\right) \Omega$, with $N \in \mathbb{N}_{0}, i_{n} \in I$ for $n=1, \ldots, N$, and with all i_{n} different from each other, form an orthonormal basis of $\mathcal{F}^{(-)}$provided one takes only one representative per class of sequences $\left(i_{1}, \ldots, i_{N}\right)$ which differ only by a permutation.

Exercise 5

Consider next the special case $\mathfrak{h}=\ell_{2}(\mathbb{Z})$, and denote $a_{-}(x), x \in \mathbb{Z}$, for $a_{-}\left(e_{x}\right)$ where $e_{x}(y)=1$ for $y=x$ and zero otherwise. Similarly as in Exercise 6.10, define dense subspaces $D_{0} \subset \mathcal{F}$ and $D_{-} \subset \mathcal{F}^{(-)}$by $D_{0}:=\left\{\Psi \in \mathcal{F} \mid \sum_{N=0}^{\infty} N^{4}\left\|\Psi_{N}\right\|^{2}<\infty\right\}$ and $D_{-}:=D_{0} \cap \mathcal{F}^{(-)}$. Fix some $v_{1} \in \ell_{1}(\mathbb{Z})$ and $v_{2} \in \ell_{1}(\mathbb{Z} \times \mathbb{Z})$.
(a) Show that the following formulae define two operators B_{1} and B_{2} with a domain D_{0} on \mathcal{F}. Set

$$
\begin{aligned}
& \left(B_{1} \Psi\right)_{N}\left(x_{1}, \ldots, x_{N}\right):=\sum_{i=1}^{N} v_{1}\left(x_{i}\right) \Psi_{N}(x), \quad \Psi \in D_{0}, N \geq 1 \\
& \left(B_{2} \Psi\right)_{N}\left(x_{1}, \ldots, x_{N}\right):=\sum_{i, j=1 ; i \neq j}^{N} v_{2}\left(x_{i}, x_{j}\right) \Psi_{N}(x), \quad \Psi \in D_{0}, N \geq 2,
\end{aligned}
$$

and define $\left(B_{1} \Psi\right)_{0}=0=\left(B_{2} \Psi\right)_{0}=\left(B_{2} \Psi\right)_{1}$. (Both operators are actually multiplication operators; B_{1} is called a one-body potential and B_{2} a two-body potential.)
(b) Show that the operator $\sum_{x \in \mathbb{Z}} v_{1}(x) a_{-}^{*}(x) a_{-}(x)$ is the unique bounded extension of $\left.P^{(-)} B_{1}\right|_{D_{-}}$to an element in $\mathcal{B}\left(\mathcal{F}^{(-)}\right)$.
(c) Show that the operator

$$
\sum_{x, y \in \mathbb{Z}} v_{2}(x, y) a_{-}^{*}(x) a_{-}^{*}(y) a_{-}(y) a_{-}(x)
$$

is the unique bounded extension of $\left.P^{(-)} B_{2}\right|_{D_{-}}$in $\mathcal{B}\left(\mathcal{F}^{(-)}\right)$.
Note how easily the antisymmetrization can be handled by using the creation and annihilation operators here.

