Introduction to Mathematical Physics: Spectral Theory

Homework set 8 19. Nov 2010

Exercise 1

Let \mathcal{V}_1 and \mathcal{V}_2 be normed spaces. Define

 $\mathcal{B}(\mathcal{V}_1, \mathcal{V}_2) := \{T : \mathcal{V}_1 \to \mathcal{V}_2 \mid T \text{ is linear and continuous} \}.$

(a) Show that a linear map $T: \mathcal{V}_1 \to \mathcal{V}_2$ belongs to $\mathcal{B}(\mathcal{V}_1, \mathcal{V}_2)$ if and only if $||T|| < \infty$, where

$$||T|| := \sup_{x \in \mathcal{V}_1, \, ||x|| \le 1} ||Tx||.$$

- (b) Prove that $\mathcal{B}(\mathcal{V}_1, \mathcal{V}_2)$ is a vector space and $T \mapsto ||T||$ defines a norm on it.
- (c) Show that, if \mathcal{V}_2 is a Banach space, then $\mathcal{B}(\mathcal{V}_1, \mathcal{V}_2)$ is a Banach space.

Exercise 2

Consider a normed space \mathcal{V} and its dual space \mathcal{V}^* . For every $\Lambda \in \mathcal{V}^*$ define

$$\|\Lambda\|:=\sup_{x\in\mathcal{V},\,\|x\|\leq 1}\left|\Lambda x\right|.$$

Conclude that $\Lambda \mapsto \|\Lambda\|$ makes \mathcal{V}^* into a Banach space. Set

$$B^* := \{\Lambda \in \mathcal{V}^* \, | \, \|\Lambda\| \le 1\} \; ,$$

and recall the notation f_x for the map $f_x(\Lambda) = \Lambda(x)$ and that by Proposition 13.10 each f_x is a linear functional on \mathcal{V}^* .

- (a) Show that $||x|| = \sup_{\Lambda \in B^*} |\Lambda x|$, for any $x \in \mathcal{V}$.
- (b) Show that every f_x is norm-continuous, and $||f_x|| = ||x||$.
- (c) Show that B^* is weak*-compact.

In addition, prove that if \mathcal{V}_1 and \mathcal{V}_2 are normed spaces and $T \in \mathcal{B}(\mathcal{V}_1, \mathcal{V}_2)$, then

$$||T|| = \sup \{ |\Lambda(Tx)| | x \in \mathcal{V}_1, \Lambda \in (\mathcal{V}_2)^*, ||x|| \le 1, ||\Lambda|| \le 1 \}.$$

Exercise 3

- (a) Suppose \mathcal{T}_1 is a Hausdorff topology on a set X, and \mathcal{T}_2 is a topology on X under which X is compact. Show that if $\mathcal{T}_1 \subset \mathcal{T}_2$ then $\mathcal{T}_1 = \mathcal{T}_2$. (Hint: Consider closed sets.)
- (b) Consider a set X with a topology \mathcal{T}_X under which X is compact. Suppose there is a sequence $f_n : X \to \mathbb{R}$, $n \in \mathbb{N}_+$, of continuous functions such that it separates points on X (meaning that for any $x_1, x_2 \in X$ with $x_1 \neq x_2$ there is n such that $f_n(x_1) \neq f_n(x_2)$). Set $c_n := 1 + \sup_{x \in X} |f_n(x)|$ and show that the formula

$$d(x,y) := \sum_{n=1}^{\infty} 2^{-n} \frac{1}{c_n} |f_n(x) - f_n(y)| , \qquad x, y \in X ,$$

defines a metric on X which induces \mathcal{T}_X . (Thus \mathcal{T}_X is then metrizable.)

(Please turn over!)

Exercise 4

Consider the fermionic Fock space $\mathcal{F}^{(-)}$ generated by a one-particle Hilbert space \mathfrak{h} , and the corresponding creation and annihilation operators $a_{-}^{*}(g)$, and $a_{-}(g)$, $g \in \mathfrak{h}$, as defined in Exercise 6.10. Let also \mathcal{F} denote the full Fock space, with a vacuum vector Ω , and $P^{(-)}$ the orthogonal projection onto $\mathcal{F}^{(-)}$. Prove the following statements.

(a) Consider some $N \in \mathbb{N}_+$ and $f_i \in \mathfrak{h}$, i = 1, ..., N, and define the vector $\Psi \in \mathcal{F}$ by $\Psi_N = f_1 \otimes \cdots \otimes f_N$ and $\Psi_n = 0$ for $n \neq N$. Show that then

$$P^{(-)}\Psi = (N!)^{-1/2}a_{-}^{*}(f_{1})\cdots a_{-}^{*}(f_{N})\Omega$$

(b) Show that for all $f, g \in \mathfrak{h}$, the canonical anticommutation relations hold:

$$\begin{split} a^*_-(f)a^*_-(g) &= -a^*_-(g)a^*_-(f)\,, \quad a_-(f)a_-(g) = -a_-(g)a_-(f)\,, \quad \text{and} \\ a_-(f)a^*_-(g) &= -a^*_-(g)a_-(f) + (f,g)_{\mathfrak{h}} \mathbf{1}\,. \end{split}$$

(c) Let $(e_i)_{i \in I}$ be an orthonormal basis of \mathfrak{h} . Show that the vectors $a_-^*(e_{i_1}) \cdots a_-^*(e_{i_N})\Omega$, with $N \in \mathbb{N}_0$, $i_n \in I$ for $n = 1, \ldots, N$, and with all i_n different from each other, form an orthonormal basis of $\mathcal{F}^{(-)}$ provided one takes only one representative per class of sequences (i_1, \ldots, i_N) which differ only by a permutation.

Exercise 5

Consider next the special case $\mathfrak{h} = \ell_2(\mathbb{Z})$, and denote $a_-(x), x \in \mathbb{Z}$, for $a_-(e_x)$ where $e_x(y) = 1$ for y = x and zero otherwise. Similarly as in Exercise 6.10, define dense subspaces $D_0 \subset \mathcal{F}$ and $D_- \subset \mathcal{F}^{(-)}$ by $D_0 := \{\Psi \in \mathcal{F} \mid \sum_{N=0}^{\infty} N^4 ||\Psi_N||^2 < \infty\}$ and $D_- := D_0 \cap \mathcal{F}^{(-)}$. Fix some $v_1 \in \ell_1(\mathbb{Z})$ and $v_2 \in \ell_1(\mathbb{Z} \times \mathbb{Z})$.

(a) Show that the following formulae define two operators B_1 and B_2 with a domain D_0 on \mathcal{F} . Set

$$(B_1\Psi)_N(x_1,\ldots,x_N) := \sum_{i=1}^N v_1(x_i)\Psi_N(x), \quad \Psi \in D_0, \ N \ge 1,$$
$$(B_2\Psi)_N(x_1,\ldots,x_N) := \sum_{i,j=1; i \neq j}^N v_2(x_i,x_j)\Psi_N(x), \quad \Psi \in D_0, \ N \ge 2.$$

and define $(B_1\Psi)_0 = 0 = (B_2\Psi)_0 = (B_2\Psi)_1$. (Both operators are actually multiplication operators; B_1 is called a one-body potential and B_2 a two-body potential.)

- (b) Show that the operator $\sum_{x \in \mathbb{Z}} v_1(x) a_-^*(x) a_-(x)$ is the unique bounded extension of $P^{(-)}B_1|_D$ to an element in $\mathcal{B}(\mathcal{F}^{(-)})$.
- (c) Show that the operator

$$\sum_{x,y\in\mathbb{Z}} v_2(x,y)a_-^*(x)a_-^*(y)a_-(y)a_-(x)$$

is the unique bounded extension of $P^{(-)}B_2|_{D_-}$ in $\mathcal{B}(\mathcal{F}^{(-)})$.

Note how easily the antisymmetrization can be handled by using the creation and annihilation operators here.