Introduction to Mathematical Physics:
 Spectral Theory

Homework set 11

The exam of the course will be held in the first general examination session of the department, on Friday 17.12. between 8:30-12:30 in the Exactum auditorium A111 (or B123). If you wish to take the exam, please register in WebOodi by 9.12. the latest. After this, you can register to the exam only by e-mail.

Exercise 1

(a) Suppose J is a proper ideal in a commutative complex algebra \mathcal{C}. Show that if $x \in \mathcal{C}$ is invertible, then $x \notin J$.
(b) Suppose J is an ideal in a commutative Banach algebra \mathcal{C}. Show that its closure \bar{J} is also an ideal

Exercise 2

Suppose \mathcal{A} is a Banach algebra whose unit is e, and $E \subset \mathcal{A}$. Define

$$
F:=\{e\} \cup\left\{x_{1} x_{2} \cdots x_{n} \mid n \in \mathbb{N}_{+} \text {and } x_{i} \in E, \text { for all } i=1,2, \ldots, n\right\}
$$

Let M be the closure of the vector space spanned by F. Show that M is a Banach algebra; it is called the Banach subalgebra generated by E. Show also that, if $x y=y x$ for every $x, y \in E$, then M is commutative.

Exercise 3

Suppose \mathcal{A} is a Banach algebra whose unit is e, and $x \in \mathcal{A}$. Denote the spectrum of x by $\sigma(x)$, the resolvent set of x by $\rho(x)$, and the resolvent map by $R_{z}:=(z e-x)^{-1}$, with $z \in \rho(x)$. Prove that for all $z, z^{\prime} \in \rho(x)$,
(a) $R_{z^{\prime}}-R_{z}=-\left(z^{\prime}-z\right) R_{z^{\prime}} R_{z}$,
(b) $R_{z^{\prime}}$ commutes with R_{z},
(c) R_{z} commutes with x.

Exercise 4

Continuation from the previous exercise:

Let γ_{r} denote the positively oriented circle of radius r around 0 : set $\gamma_{r}(t):=r \mathrm{e}^{\mathrm{i} t}$ for $t \in[0,2 \pi]$. Assume $r>\|x\|$ and prove that as a vector valued integral

$$
\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma_{r}} \mathrm{~d} z R_{z}=e
$$

Suppose then that $z_{0} \in \rho(x)$ and let γ be a path in $\rho(x) \backslash\left\{z_{0}\right\}$ which goes once around $\sigma(x)$ but does not go around z_{0}. (Meaning that $\operatorname{Ind}_{\gamma}\left(z_{0}\right)=0$ and $\operatorname{Ind}_{\gamma}(\lambda)=1$ for all $\lambda \in \sigma(x)$. Note that if z_{0} belongs to a bounded component of $\rho(x)$, the "path" will actually be a union of two paths, and should be called a cycle. An integral over a cycle is defined as the sum of the integrals over its component paths.) Show that for all $n \in \mathbb{Z}$, as vector valued integrals

$$
\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma} \mathrm{d} z\left(z_{0}-z\right)^{n} R_{z}=\left(z_{0} e-x\right)^{n}
$$

(Hint: Induction from $n=0$.)

Exercise 5

Continuation from Exercise 3:

Assume then that λ is an isolated point in the spectrum of x, i.e., that $\lambda \in \sigma(x)$ and there is some $\varepsilon>0$ so that $\sigma(x) \cap B(\lambda, 2 \varepsilon)$ contains only λ. Let γ denote the positively oriented circle of radius ε around λ : set $\gamma(t):=\lambda+\varepsilon \mathrm{e}^{\mathrm{i} t}$ for $t \in[0,2 \pi]$. Define $P, T \in \mathcal{A}$ by

$$
P:=\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma} \mathrm{d} z R_{z}, \quad T:=\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma} \mathrm{d} z(z-\lambda) R_{z}
$$

(a) Show that the definitions make sense as vector valued integrals.
(b) Show that P, T, and x commute with each other. (Hint: Theorems 15.3.d and 16.2.)
(c) Show that $T+\lambda P=x P$.
(d) Prove that P is idempotent: $P^{2}=P$. (Hint: Cauchy's theorem.)

Exercise 6

Continuation from the previous exercise:
(a) Show that $\lim _{z \rightarrow \lambda}\left\|R_{z}\right\|=\infty$.

Thus R_{z} is singular at λ. Suppose now that there is $n \in \mathbb{N}_{+}$such that $z \mapsto|z-\lambda|^{n}\left\|R_{z}\right\|$ is bounded in some neighborhood of λ. Let $m \in \mathbb{N}_{+}$be the smallest of such n.
(b) Show that then λ is a pole of order m of R_{z} : show that there are $c_{n} \in \mathcal{A}, n=0,1, \ldots, m$, such that $c_{m} \neq 0$ and the map $f: \rho(x) \cup\{\lambda\} \rightarrow \mathcal{A}$ defined by $f(\lambda):=c_{0}$ and $f(z):=$ $R_{z}-\sum_{n=1}^{m}(z-\lambda)^{-n} c_{n}, z \in \rho(x)$, is holomorphic. (Hint: Show that $(z-\lambda)^{m+1} R_{z}$ is then holomorphic on $\rho(x) \cup\{\lambda\}$, and guess from this integral expressions for c_{n}.)
(c) Show that $c_{n}=(x-\lambda e)^{n-1} P$ for any $n=1, \ldots, m$.
(d) Show that T is nilpotent: show that $T^{m}=0$. (Hint: $c_{2}=T$ if $m \geq 2$.)

