Introduction to Mathematical Physics: Spectral Theory

Homework set 3 Friday 1. Oct 2010

General note about the exercises: even if you have not finished proving some exercise, it is OK to use its results in the problems following it.

Exercise 1

Let $T, S \in \mathcal{B}(\mathcal{H})$, and $\alpha \in \mathbb{C}$ be arbitrary. Show that all of the following statements hold for the related adjoint operators.

- (a) $(T+S)^* = T^* + S^*$
- (b) $(\alpha T)^* = \alpha^* T^*$
- (c) $(ST)^* = T^*S^*$ (notation: $ST = S \circ T$)
- (d) $T^{**} = T$ (notation: $T^{**} = (T^*)^*$)
- (e) $||T^*T|| = ||T||^2$

(This proves that * is an involution on $\mathcal{B}(\mathcal{H})$ which makes it into a C^* -algebra.)

Exercise 2

Let $M \subset \mathcal{H}$ be a subspace (not necessarily closed). Show that $(M^{\perp})^{\perp} = \overline{M}$.

Exercise 3

Consider an arbitrary $T \in \mathcal{B}(\mathcal{H})$.

- (a) Prove that the "expectation values" of T determine it uniquely: show that, if $(\psi, T\psi) = 0$ for all $\psi \in \mathcal{H}$, then T = 0. (Hint: generalize the polarization identity.)
- (b) Prove that $\operatorname{Ker}(T^*) = R(T)^{\perp}$ and $\operatorname{Ker}(T) = R(T^*)^{\perp}$.

Exercise 4

Suppose $P \in \mathcal{B}(\mathcal{H})$ is a non-zero projection. Show that the following statements are equivalent:

- (a) P is an orthogonal projection.
- (b) P is self-adjoint.
- (c) P is non-negative (meaning that $(\psi, P\psi) \ge 0$ for all $\psi \in \mathcal{H}$).
- (d) P is normal.
- (e) ||P|| = 1.
- (f) $||P|| \le 1.$

(Please turn over!)

Exercise 5

Vector and operator *sequences*: types of convergence

By relying on the definitions given in Section 3.5 of the lecture notes, first prove the following statements about convergence of sequences in these topologies.

(a) Consider a sequence $(\psi_n)_{n \in \mathbb{N}}$ in \mathcal{H} . Then ψ_n converges to $\psi \in \mathcal{H}$

in norm if $\|\psi - \psi_n\| \to 0$ when $n \to \infty$. if $(\phi, \psi - \psi_n) \xrightarrow{n \to \infty} 0$ for all $\phi \in \mathcal{H}$. weakly

(b) For a sequence of bounded operators, $(T_n)_{n \in \mathbb{N}}$ in $\mathcal{B}(\mathcal{H})$, there are three possibilities: T_n converges to $T \in \mathcal{B}(\mathcal{H})$

uniformly, or in norm,	if $ T - T_n _{\mathcal{B}(\mathcal{H})} \to 0$ when $n \to \infty$.
strongly	if $ T\psi - T_n\psi _{\mathcal{H}} \xrightarrow{n \to \infty} 0$ for all $\psi \in \mathcal{H}$.
weakly	if $(\phi, T\psi - T_n\psi) \xrightarrow{n \to \infty} 0$ for all $\phi, \psi \in \mathcal{H}$.

We will use the following notations for the various types of convergence: $\lim \text{ or } \rightarrow \text{ for norm-}$ convergence, s-lim or $\stackrel{s}{\rightarrow}$ for strong convergence, and w-lim or $\stackrel{w}{\rightarrow}$ for weak convergence.

Show that

 $\begin{array}{cccc} (\mathbf{c}) & \psi_n \to \psi & \Longrightarrow & \psi_n \stackrel{\mathrm{w}}{\to} \psi \\ (\mathbf{d}) & T_n \to T & \Longrightarrow & T_n \stackrel{\mathrm{s}}{\to} T & \Longrightarrow & T_n \stackrel{\mathrm{w}}{\to} T \end{array}$

Exercise 6

Let $\mathcal{H} = \ell_2(\mathbb{N})$. (That is, let $\mathcal{H} = L^2(\mu)$ with μ the counting measure on $\mathbb{N} = \{0, 1, \ldots\}$.) Consider the following mappings defined for $\psi \in \mathcal{H}$, $n \ge 1$, and $k \in \mathbb{N}$:

$$(T_n^{(1)}\psi)(k) = \frac{1}{n}\psi(k),$$
(1)

$$(T_n^{(2)}\psi)(k) = \begin{cases} \psi(k), & \text{if } k \ge n, \\ 0, & \text{otherwise,} \end{cases}$$
(2)

$$(T_n^{(3)}\psi)(k) = \begin{cases} \psi(k-n), & \text{if } k \ge n, \\ 0, & \text{otherwise.} \end{cases}$$
(3)

In other words, $T_n^{(1)}$ is division by n, $T_n^{(2)}$ is cancellation of the first n elements, and $T_n^{(3)}$ is right-shift by n.

Prove that

- (a) $T_n^{(i)} \in \mathcal{B}(\mathcal{H})$ for i = 1, 2, 3 and $n \ge 1$.

- (a) $T_n^{(1)} \to 0$ in norm. (b) $T_n^{(1)} \to 0$ in norm. (c) $T_n^{(2)} \stackrel{s}{\to} 0$ but $T_n^{(2)} \not\to 0$. (d) $T_n^{(3)} \stackrel{w}{\to} 0$ but $T_n^{(3)} \stackrel{s}{\not\to} 0$ and $T_n^{(3)} \not\to 0$.