Introduction to Mathematical Physics:
 Spectral Theory

Homework set 3

General note about the exercises: even if you have not finished proving some exercise, it is OK to use its results in the problems following it.

Exercise 1

Let $T, S \in \mathcal{B}(\mathcal{H})$, and $\alpha \in \mathbb{C}$ be arbitrary. Show that all of the following statements hold for the related adjoint operators.
(a) $(T+S)^{*}=T^{*}+S^{*}$
(b) $(\alpha T)^{*}=\alpha^{*} T^{*}$
(c) $(S T)^{*}=T^{*} S^{*}$ (notation: $S T=S \circ T$)
(d) $T^{* *}=T$ (notation: $\left.T^{* *}=\left(T^{*}\right)^{*}\right)$
(e) $\left\|T^{*} T\right\|=\|T\|^{2}$
(This proves that * is an involution on $\mathcal{B}(\mathcal{H})$ which makes it into a C^{*}-algebra.)

Exercise 2

Let $M \subset \mathcal{H}$ be a subspace (not necessarily closed). Show that $\left(M^{\perp}\right)^{\perp}=\bar{M}$.

Exercise 3

Consider an arbitrary $T \in \mathcal{B}(\mathcal{H})$.
(a) Prove that the "expectation values" of T determine it uniquely: show that, if $(\psi, T \psi)=$ 0 for all $\psi \in \mathcal{H}$, then $T=0$. (Hint: generalize the polarization identity.)
(b) Prove that $\operatorname{Ker}\left(T^{*}\right)=R(T)^{\perp}$ and $\operatorname{Ker}(T)=R\left(T^{*}\right)^{\perp}$.

Exercise 4

Suppose $P \in \mathcal{B}(\mathcal{H})$ is a non-zero projection. Show that the following statements are equivalent:
(a) P is an orthogonal projection.
(b) P is self-adjoint.
(c) P is non-negative (meaning that $(\psi, P \psi) \geq 0$ for all $\psi \in \mathcal{H})$.
(d) P is normal.
(e) $\|P\|=1$.
(f) $\|P\| \leq 1$.

Exercise 5

Vector and operator sequences: types of convergence

By relying on the definitions given in Section 3.5 of the lecture notes, first prove the following statements about convergence of sequences in these topologies.
(a) Consider a sequence $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{H}. Then ψ_{n} converges to $\psi \in \mathcal{H}$
in norm if $\left\|\psi-\psi_{n}\right\| \rightarrow 0$ when $n \rightarrow \infty$.
weakly if $\left(\phi, \psi-\psi_{n}\right) \xrightarrow{n \rightarrow \infty} 0$ for all $\phi \in \mathcal{H}$.
(b) For a sequence of bounded operators, $\left(T_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{B}(\mathcal{H})$, there are three possibilities: T_{n} converges to $T \in \mathcal{B}(\mathcal{H})$

```
uniformly, or in norm, if |T- T T | |\mathcal{B}(\mathcal{H})}->0\mathrm{ when }n->\infty\mathrm{ .
strongly if |T\psi-\mp@subsup{T}{n}{}\psi\mp@subsup{|}{\mathcal{H}}{}\xrightarrow{}{n->\infty}0\mathrm{ for all }\psi\in\mathcal{H}\mathrm{ .}
weakly if ( }\phi,T\psi-\mp@subsup{T}{n}{}\psi)\xrightarrow{}{n->\infty}0\mathrm{ for all }\phi,\psi\in\mathcal{H}
```

We will use the following notations for the various types of convergence: lim or \rightarrow for normconvergence, s-lim or \xrightarrow{s} for strong convergence, and w-lim or $\xrightarrow{\mathrm{w}}$ for weak convergence.

Show that
(c) $\psi_{n} \rightarrow \psi \quad \Longrightarrow \quad \psi_{n} \xrightarrow{\mathrm{w}} \psi$
(d) $T_{n} \rightarrow T \quad \Longrightarrow \quad T_{n} \xrightarrow{\mathrm{~s}} T \quad \Longrightarrow \quad T_{n} \xrightarrow{\mathrm{w}} T$

Exercise 6

Let $\mathcal{H}=\ell_{2}(\mathbb{N})$. (That is, let $\mathcal{H}=L^{2}(\mu)$ with μ the counting measure on $\mathbb{N}=\{0,1, \ldots\}$.) Consider the following mappings defined for $\psi \in \mathcal{H}, n \geq 1$, and $k \in \mathbb{N}$:

$$
\begin{align*}
& \left(T_{n}^{(1)} \psi\right)(k)=\frac{1}{n} \psi(k), \tag{1}\\
& \left(T_{n}^{(2)} \psi\right)(k)= \begin{cases}\psi(k), & \text { if } k \geq n, \\
0, & \text { otherwise },\end{cases} \tag{2}\\
& \left(T_{n}^{(3)} \psi\right)(k)= \begin{cases}\psi(k-n), & \text { if } k \geq n \\
0, & \text { otherwise }\end{cases} \tag{3}
\end{align*}
$$

In other words, $T_{n}^{(1)}$ is division by $n, T_{n}^{(2)}$ is cancellation of the first n elements, and $T_{n}^{(3)}$ is right-shift by n.

Prove that
(a) $T_{n}^{(i)} \in \mathcal{B}(\mathcal{H})$ for $i=1,2,3$ and $n \geq 1$.
(b) $T_{n}^{(1)} \rightarrow 0$ in norm.
(c) $T_{n}^{(2)} \xrightarrow{\mathrm{s}} 0$ but $T_{n}^{(2)} \nrightarrow 0$.
(d) $T_{n}^{(3)} \xrightarrow{\mathrm{w}} 0$ but $T_{n}^{(3)} \stackrel{\lessgtr}{\rightarrow} 0$ and $T_{n}^{(3)} \nrightarrow 0$.

