Sobolev spaces, autumn 2013
The Sobolev spaces course/seminar, autumn 2013,
is run by
Number of credits given to participants
10 op.
Prerequisites
The participants should already have knowledge of the courses Real Analysis I and the basic course on Functional Analysis.
Timetable
Week numbers 36-42 and 44-50 Tuesday 10-12 C122, Wednesday12-14 B321.
Credits
are awarded to the participants for giving presentations.
Some useful books
Robert A. Adams: Sobolev Spaces, Academic Press, Boston, MA, 1975.
Robert A. Adams and John J. F. Fournier: Sobolev Spaces, Second edition.-Pure and Applied Mathematics Series 140, Elsevier/Academic Press, Amsterdam, 2003.
Haim Brezis: Functional Analysis, Sobolev Spaces and Partial Differential equations, Springer, New York Dordrecht Heidelberg London, 2011.
David Gilbarg and Neil S. Trudinger: Elliptic Partial Differential Equations of Second Order, 2nd Edition, Revised 3rd Printing, Springer-Verlag, Berlin Heidelberg, 2001.
Alois Kufner, Oldrich John and Svatopluk Fucik: Function Spaces, Noordhoff International Publishing, Leyden, 1977.
Giovanni Leoni: A First Course in Sobolev Spaces, Graduate Studies in Mathematics, Volume 105, American Mathematical Society, Providence, Rhode Island, 2009.
Vladimir Maz'ya: Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Berlin Heidelberg, 2011.
Vladimir Maz'ya and Sergey Poborchi: Differentiable Functions on Bad Domains, World Scientific, Singapore, 1997.
S. L. Sobolev:Some Applications of Functional Analysis in Mathematical Physics, Third Edition, Translations of Mathematical Monographs, Volume 90, American Mathematical Society, Providence, Rhode Island, 1991.
Luc Tartar: An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, Springer-Verlag, Berlin Heidelberg, 2007.
Course sign up
After 15.09.2013 please follow this link in order to sign up.
|
|
|
|
|
---|---|---|---|---|
|
|
|
|
|