Wiki source code of Inverse problems, spring 2015

Last modified by hauptman@helsinki_fi on 2024/03/27 10:23

Show last authors
1 = Inverse problems, spring 2015 =
2
3 === (% style="color: rgb(255,0,0);" %)**The course is lectured in English**(%%) ===
4
5 === (% style="font-size: 14px; line-height: 1.4286; color: rgb(255, 0, 0)" %)**[[image:attach:EdgeEIT.png||width="500"]]**(%%) ===
6
7 (% style="color: rgb(0,0,255);" %)Figure: electrical conductivity distribution (left), nonlinear reconstruction from voltage-to-current boundary measurements(% style="color: rgb(0, 0, 255); color: rgb(0, 0, 255)" %) (middle)(% style="color: rgb(0,0,255);" %), edge-enhanced nonlinear reconstruction (right).
8
9 (% style="color: rgb(255, 0, 0); color: rgb(0, 0, 0)" %)Inverse problems are about interpreting indirect measurements. The scientific study of inverse problems is an interdisciplinary field combining mathematics, physics, signal processing, and engineering. (%%)Examples of inverse problems include
10
11 * Three-dimensional X-ray imaging ([[more information>>url:http://www.siltanen-research.net/project_Xray.html||shape="rect"]], also see [[this video>>url:https://www.youtube.com/watch?v=-SiVPCh92TA&list=UURP6ol3uNxWVgV-zPZexcXA||shape="rect"]] and [[this video>>url:https://www.youtube.com/watch?v=CfulbwFnyJ0&list=UURP6ol3uNxWVgV-zPZexcXA||shape="rect"]])
12 * (% style="font-size: 14.0px;line-height: 1.4285715;" %)Recovering the inner structure of the Earth based on earthquake measurements
13 * (% style="font-size: 14.0px;line-height: 1.4285715;" %)Sharpening a misfocused photograph ((%%)[[more information>>url:http://wiki.helsinki.fi/display/mathstatHenkilokunta/2D+deconvolution||style="font-size: 14.0px;line-height: 1.4285715;" shape="rect"]](% style="font-size: 14.0px;line-height: 1.4285715;" %) )
14 * (% style="font-size: 14.0px;line-height: 1.4285715;" %)Reconstructing electric conductivity from current-to-voltage boundary measurements (see (%%)[[this page>>url:https://wiki.helsinki.fi/display/inverse/Electrical+Impedance+Tomography||style="font-size: 14.0px;line-height: 1.4285715;" shape="rect"]](% style="font-size: 14.0px;line-height: 1.4285715;" %) and (%%)[[this page>>url:http://www.siltanen-research.net/project_EIT.html||style="font-size: 14.0px;line-height: 1.4285715;" shape="rect"]](% style="font-size: 14.0px;line-height: 1.4285715;" %))
15 * (% style="font-size: 14.0px;line-height: 1.4285715;" %)Finding cracks inside solid structures
16 * (% style="font-size: 14.0px;line-height: 1.4285715;" %)Prospecting for oil and minerals
17 * (% style="font-size: 14.0px;line-height: 1.4285715;" %)Monitoring underground contaminants
18 * (% style="font-size: 14.0px;line-height: 1.4285715;" %)Finding the shape of asteroids based on light-curve data (see (%%)[[this page>>url:http://www.rni.helsinki.fi/~~mjk/asteroids.html||style="font-size: 14.0px;line-height: 1.4285715;" shape="rect"]](% style="font-size: 14.0px;line-height: 1.4285715;" %))
19
20 The common features of all this problems are the need to understand indirect measurements and to overcome extreme sensitivity to noise and modelling inaccuracies.
21
22 === [[image:attach:hammer.jpg||width="500"]] ===
23
24 (% style="color: rgb(0,0,255);" %)Figure: sharp image (left), misfocused image (middle), sharpened image by deconvolution (right).
25
26 Inverse problems research is an active area of mathematics.
27
28 At the Department of Mathematics and Statistics the field is represented by three research groups belonging to 
29 a [[Centre of Excellence of Academy of Finland>>url:http://wiki.helsinki.fi/display/inverse/Home;jsessionid=BCF26178580CA3F00E25F4F6A441879A||shape="rect"]]:
30
31 * [[The team of Samuli Siltanen>>url:http://wiki.helsinki.fi/display/inverseproblems/Computational+Inverse+Problems||shape="rect"]]
32 * [[The team of Matti Lassas>>url:http://wiki.helsinki.fi/display/inverseproblems/Geometric+Inverse+problems+and+applications||shape="rect"]]
33 * [[The team of Aapo Hyvärinen>>url:http://www.hiit.fi/neuro||shape="rect"]]
34
35 === What does the course contain? ===
36
37 The goals of the course are
38
39 * introduce discrete matrix models of some widely used measurements, such as tomography and convolution
40 * show how to detect ill-posedness (sensitivity to measurement noise) in matrix models using Singular Value Decomposition
41 * compute noise-robust reconstructions using //regularization//
42 * (% style="font-size: 14.0px;line-height: 1.4285715;" %)write Matlab algorithms for sharpening photographs and computing tomographic reconstructions
43 * (% style="font-size: 14.0px;line-height: 1.4285715;" %)discussion of nonlinear inverse problems, with Electrical Impedance Tomography as an example
44
45 (((
46 The course involves working with practical measurement data. Therefore, it is a good choice for students planning a career in industry.
47 )))
48
49 The lectures make up 10 credit units. In addition to lectures the course involves a **project work**. It is done in teams of two and gives 5 credit units to each student.
50
51 The course is in total **15 credit units**.
52
53 (% style="color: rgb(0,0,0);font-size: 14.0px;line-height: 1.4285715;" %) [[image:attach:Nut3web.jpg||width="500"]]
54
55 (% style="color: rgb(0,0,255);" %)Figure: high-resolution X-ray tomographic slice through a walnut (left), reconstruction from few data using an old method (middle), and reconstruction from few data using a modern method (right).
56
57 == Lecturers ==
58
59 Main lecturer: [[Samuli Siltanen>>doc:mathstatHenkilokunta.Siltanen, Samuli]]
60
61 Guest lecturers: Paola Elefante, Andreas Hauptmann, Alexander Meaney, and Zenith Purisha
62
63 == Scope ==
64
65 15 sp.
66
67 == Type ==
68
69 Advanced studies
70
71 == Prerequisites ==
72
73 Recommended courses to take before this course: Linear algebra 1 and 2, Applications of matrix computations.
74
75 Some previous experience with Matlab programming is very helpful.
76
77 == Structure of the course ==
78
79 (% style="color: rgb(128,0,128);" %)**Period III:**(%%) Lectures as follows:
80
81 Tuesday 10-12 in room D123
82 Wednesday 12-14 in room D123
83 Friday 12-14 in room C123.
84
85 Two hours of exercise classes per week.
86
87 (% style="color: rgb(128,0,128);" %)**Period IV:**(%%) Project work, which is reported as a poster in a poster session.
88
89 ----
90
91 == Lectures ==
92
93 (% style="color: rgb(128,0,0);" %)**Lecture 1 (January 13, 2015)**
94
95 Introduction to inverse problems, indirect measurements and ill-posedness.
96
97 The (huge) files of the presentations are available [[in this Dropbox folder>>url:https://www.dropbox.com/sh/yej069394jthqlb/AABI8fVPfDAhtnmTINCiWt-Ea?dl=0||shape="rect"]].
98
99 The practical information slides are available in the file [[attach:PracticalInfo.pdf]].
100
101 (% style="color: rgb(128,0,0);" %)**Lecture 2 (January 14, 2015)**
102
103 One-dimensional convolution of real-valued functions. Book section 2.1.1.
104
105 Matlab resources: [[attach:target1.m]], [[attach:targets_plot.m]], [[attach:PSF.m]], [[attach:deconv1_cont_comp.m]], [[attach:deconv1_cont_plot.m]].
106
107 (% style="color: rgb(128,0,0);" %)**Lecture 3 (January 16, 2015)**
108
109 One-dimensional convolution in both continuous and discrete form. First example of the failure of naive inversion in the case of an ill-posed problem. Book sections 2.1.2 and 2.1.3.
110
111 Matlab resources: [[attach:DC_convmtx.m]], [[attach:deconv1_cont_comp.m]], [[attach:deconv1_cont_plot.m]], 
112 [[attach:deconv2_discretedata_comp.m]], [[attach:deconv2_discretedata_plot.m]], [[attach:deconv3_naive_comp.m]], [[attach:deconv3_naive_plot.m]]
113
114 (% style="color: rgb(128,0,0);" %)**Lecture 4 (January 20, 2015)**
115
116 Computational studies of the one-dimensional deconvolution. Simulation of crime-free data. Book sections 2.1.3 and 2.1.4.
117
118 (% style="color: rgb(128,0,0);" %)**Lecture 5 (January 21, 2015)**
119
120 Singular value decomposition of matrices and how it explains the instability of naive inversion. Book chapter 3.5.
121
122 Matlab resources: [[attach:deconv4_SVD_comp.m]], [[attach:deconv4_SVD_plot.m]], [[attach:deconv5_truncSVD_comp.m]], [[attach:deconv5_truncSVD_plot.m]]
123
124 (% style="color: rgb(128,0,0);" %)**Lecture 6 (January 23, 2015)**
125
126 (% style="color: rgb(0,0,0);" %)Well-posedness and ill-posedness in the sense of Hadamard. Quick introduction to the concept of regularization. Minimum norm solution and the Moore-Penrose pseudoinverse. Book sections 3.1 and 3.4. and 4.1. (No computational stuff this time.)
127
128 (% style="color: rgb(128,0,0);" %)**Lecture 7 (January 27, 2015)**
129
130 (% style="color: rgb(0,0,0);" %)Introduction to X-ray measurements and their mathematical modelling. Book sections 2.3.1, 2.3.2 and 2.3.4.
131
132 (% style="color: rgb(0,0,0);" %)Videos: [[Recording a projection image by scanning>>url:https://www.youtube.com/watch?v=TbLaQo3rgEE||shape="rect"]], [[Collection of tomographic data>>url:https://www.youtube.com/watch?v=5Vyc1TzmNI8&feature=youtu.be||shape="rect"]]
133
134 (((
135 (% style="color: rgb(128,0,0);" %)**Lecture 8 (January 28, 2015)**(%%)
136
137 (% style="color: rgb(0,0,0);" %)Construction of X-ray measurement matrices using Matlab's built-in function radon.m. Naive reconstruction from data with inverse crime. Also: truncated SVD reconstructions from data with inverse crime. Book sections 2.3.4, 2.3.5, 4.2 and 4.4.3.
138
139 (% style="color: rgb(0,0,0);" %)Matlab resources: [[attach:Radon_demo.m]], [[attach:XR01_buildA.m]], [[attach:XR02_naivetest.m]], [[attach:XR03_truncSVD.m]]
140
141 (% style="color: rgb(0,0,0);" %)
142
143 )))
144
145 (((
146 (% style="color: rgb(128,0,0);" %)**Lecture 9 (January 30, 2015)**(%%)
147
148 (((
149 (% style="color: rgb(0,0,0);line-height: 1.4285715;" %)Two demonstrations of current research in X-ray tomography reconstruction methods.
150 )))
151
152 (((
153 (% style="color: rgb(0, 0, 0); line-height: 1.4286; color: rgb(0, 0, 0); line-height: 1.4286" %) (%%)**Paola Elefante:** //Dynamic X-ray sparse tomography//
154
155 (% class="p1" %)
156 Motivation for sparse tomography: hints on how cancer is formed and X-rays as environmental factors, possible improvements for medical care. Motivation for dynamic tomography: veterinary applications, material testing, monitoring the effects of cancer medications, and angiography (with video). The level set method, brief introduction. Presenting simulated data, comparison with FBP and Tikhonov. State of the art of local research and upcoming challenges. [[Slides available here.>>url:http://paolaelefante.com/wp-content/uploads/2014/11/4DStom.pdf||shape="rect"]]
157
158 (% class="p1" %)
159 **Zenith Purisha:** //X-ray tomography using MCMC and NURBS//
160
161 (% class="p1" %)
162 ~1. Motivation for using NURBS, the building blocks in CAD modelling. Why does CAD use NURBS: it involves a few parameters only, making computation efficient. Taking sparse data from a homogenous object to have quick measurement process. In medical environment, sparse data will reduce radiation dose. The idea is implementing Bayesian Inversion and NURBS to recover the parameters.
163
164 (% class="p2" %)
165 2. Introduction about NURBS (one slide, a video), Tomographic Measurement model (Included Basic Xray measurement, Radon transform, Discrete tomographic Data, and of course NURBS-based tomographic model), Bayesian Inversion and MCMC.
166
167 (% class="p1" %)
168 3. Results of reconstruction from real data
169
170 (% class="p1" %)
171 [[Slides available here.>>attach:Purisha.pdf]]
172 )))
173
174 (((
175 (% style="color: rgb(0,0,0);line-height: 1.4285715;" %)
176
177 )))
178
179 (% style="color: rgb(128,0,0);" %)**Lecture 10 (February 3, 2015)**(%%)
180
181 (% style="line-height: 1.4285715;color: rgb(0,0,0);" %)Construction of tomographic data without inverse crime. The trick is to simulate the sinogram at higher resolution and then interpolate from that the sinogram corresponding to lower resolution.
182
183 (% style="line-height: 1.4285715;color: rgb(0,0,0);" %)Matlab resources: [[attach:XR04_NoCrimeData_comp.m]], [[attach:XR04_NoCrimeData_plot.m]]
184
185 (% style="line-height: 1.4285715;color: rgb(0,0,0);" %)
186
187
188 (% style="color: rgb(128,0,0);" %)**Lecture 11 (February 4, 2015)**(%%)
189
190 (% style="color: rgb(0,0,0);" %)Introduction to Tikhonov regularization. Finding the minimum of the Tikhonov functional using the singular value decomposition.
191
192 (% style="color: rgb(0, 0, 0); color: rgb(0, 0, 0)" %)Book section 5.1.
193
194 (% style="color: rgb(0,0,0);" %)Matlab resources: [[attach:deconv6_Tikhonov_comp.m]], [[attach:deconv6_Tikhonov_plot.m]]
195
196 (% style="color: rgb(128,0,0);" %)**
197 **
198
199 (% style="color: rgb(128,0,0);" %)**Lecture 12 (February 6, 2015)**(%%)
200
201 (% style="color: rgb(0,0,0);" %)Introduction to the generation of X-rays. Tomography lab visit.
202
203 (% style="color: rgb(0,0,0);" %)[[Slides available here.>>attach:Xray_lecture_Inverse_Problems_20150206.pdf]]
204
205
206 (% style="color: rgb(0,0,0);" %)
207
208 (% style="color: rgb(128,0,0);" %)**Lecture 13 (February 10, 2015)**(%%)
209
210 (% style="color: rgb(0,0,0);" %)Introduction to normal equations and the stacked form method for computing Tikhonov regularized solutions.
211
212 (% style="color: rgb(0, 0, 0); color: rgb(0, 0, 0)" %)Matlab resources: [[attach:deconv7_genTikhonov_comp.m]], [[attach:deconv7_genTikhonov_plot.m]]
213
214 (% style="color: rgb(0, 0, 0); color: rgb(0, 0, 0)" %)Book section 5.2.
215
216
217
218 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0); color: rgb(128, 0, 0)" %)**Lecture 14 (February 13, 2015)**
219
220 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0); color: rgb(128, 0, 0); color: rgb(0, 0, 0)" %)Large-scale implementation. Matrix free formulation and the conjugate gradient method. Book section 5.5
221
222
223 Matlab resources: [[attach:XR05_Tikhonov_comp.m]], [[attach:XR05_Tikhonov_plot.m]],[[attach:XRMC_NoCrime_bigData256_50.mat]]
224
225 Further reading material on optimization and conjugate gradient can be found here: [[http:~~/~~/www4.ncsu.edu/~~~~ctk/lv/lvpub.html>>url:http://www4.ncsu.edu/~~ctk/lv/lvpub.html||shape="rect"]]
226
227 (% style="line-height: 1.4286; color: rgb(0, 0, 0); color: rgb(128, 0, 0)" %)**
228 **
229
230 (% style="line-height: 1.4286; color: rgb(0, 0, 0); color: rgb(128, 0, 0)" %)**Lecture 15 (February 17, 2015)**
231
232 (% style="color: rgb(0,0,0);" %)Sparsity-promoting reconstruction for the deconvolution problem using L1-norm regularization. Book sections 6.1 and 6.2.
233
234
235 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0)" %)**
236 **
237
238 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0)" %)**Lecture 16 (February 18, 2015)**
239
240 (% style="color: rgb(0,0,0);line-height: 1.4285715;" %)Review of four variational regularization methods in the case of 1D deconvolution:
241 (1) Classical Tikhonov regularization (penalty: L2 norm of f),
242 (2) Generalized Tikhonov regularization with derivative penalty (% style="color: rgb(0, 0, 0); line-height: 1.4286; color: rgb(0, 0, 0)" %)(penalty: L2 norm of Lf)(% style="color: rgb(0,0,0);line-height: 1.4285715;" %),
243 (3) Sparsity-promoting regularization(% style="color: rgb(0, 0, 0); line-height: 1.4286; color: rgb(0, 0, 0)" %) (penalty: L1 norm of f), 
244 (4) Total variation (TV) regularization(% style="color: rgb(0, 0, 0); line-height: 1.4286; color: rgb(0, 0, 0); color: rgb(0, 0, 0)" %) (penalty: L1 norm of Lf).
245
246 (% style="color: rgb(0, 0, 0); line-height: 1.4286; color: rgb(0, 0, 0); color: rgb(0, 0, 0)" %)Implementation of TV regularization for the 2D tomography case using quadratic programming. Book section 6.
247
248 (% style="color: rgb(0,0,0);line-height: 1.4285715;" %)Matlab resources for 1D deconvolution: all files updated, please download them from this [[Dropbox directory>>url:https://www.dropbox.com/sh/5t38evur8z5umi7/AAAEgErCWZUsgsRAiv3rcflCa?dl=0||shape="rect"]].
249
250 (% style="color: rgb(0,0,0);line-height: 1.4285715;" %)Matlab resources for 2D tomography: [[attach:XR09_TV_comp.m]] (it works!)
251
252 (% style="color: rgb(0, 0, 0); line-height: 1.4286; color: rgb(128, 0, 0)" %)** **
253
254 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0)" %)**Lecture 17 (February 20, 2015)**
255
256 (% style="color: rgb(0,0,0);" %)Closer study of TV-based tomography using the routine [[attach:XR09_TV_comp.m]]. (% style="color: rgb(0, 0, 0); color: rgb(0, 0, 0)" %)We added comparison to filtered back-projection, as you can see by running [[attach:XR09_TV_plot.m]]. You will need the additional files [[attach:MyDS2.m]] and [[attach:MyDScol.m]]. Discussion of large-scale TV computation based on smoothing out the absolute value function and applying the Barzilai-Borwein minimization method for the resulting smooth objective functional.
257
258 (% style="color: rgb(0, 0, 0); color: rgb(0, 0, 0)" %)Book section 6.
259
260 (% style="color: rgb(0, 0, 0); color: rgb(0, 0, 0)" %)For a basic introduction to optimization, see Chapter 10 of the classical book [[Numerical Recipes>>url:http://www.nr.com/||shape="rect"]].
261
262 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0); color: rgb(128, 0, 0)" %)** **
263
264 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0)" %)**Lecture 18 (February 24, 2015)**
265
266 (% style="color: rgb(0,0,0);" %)Wavelet-based regularization and Besov norm penalties. See [[this document>>attach:WaveletBesovRegul.pdf]].
267
268 (% style="color: rgb(0,0,0);" %)Book chapter 7.
269
270 (% style="color: rgb(0,0,0);" %)Matlab resources: [[attach:BesovNormMatrixDiag.m]], [[attach:HaarTransformMatrix.m]], [[attach:deconv10_B111_comp.m]], [[attach:deconv10_B111_plot.m]].
271
272 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0); color: rgb(128, 0, 0)" %)** **
273
274 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0)" %)**Lecture 19 (February 25, 2015)**(% style="color: rgb(0, 0, 0); line-height: 1.4286; color: rgb(128, 0, 0)" %)** **
275
276 (% style="color: rgb(0,0,0);line-height: 1.4285715;" %)Mathematical derivation of the Filtered Back-Projection method. Here are details: [[attach:FBP.pdf]]. (% style="color: rgb(0,0,0);" %)Also, see Chapter 3 of the (%%)[[book by Kak and Slaney>>url:http://www.slaney.org/pct/pct-toc.html||style="line-height: 1.4285715;" shape="rect"]](% style="color: rgb(0,0,0);" %).
277
278 (% style="color: rgb(0,0,0);" %)Book chapter 2.3.3.
279
280
281
282 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0)" %)**Lecture 20 (Last lecture! February 27, 2015)**
283
284 (% style="color: rgb(0,0,0);" %)Introduction to the course exam. It is recommended to take part in this session if you plan to pass the course.
285
286 (% style="color: rgb(0,0,0);" %)Discussion of project work topics, division to project groups. (% style="color: rgb(0, 0, 0); color: rgb(0, 0, 0)" %)It is recommended to take part in this session if you plan to make the project work.
287
288 (% style="color: rgb(0, 0, 0); color: rgb(128, 0, 0)" %)**
289 **
290 )))
291
292 ----
293
294 == Matlab resources ==
295
296 You can always find the latest set of Matlab files in this [[Dropbox directory>>url:https://www.dropbox.com/sh/5t38evur8z5umi7/AAAEgErCWZUsgsRAiv3rcflCa?dl=0||shape="rect"]].
297
298 ----
299
300 == Exam ==
301
302 The home exam is [[here>>attach:2015_home_exam.pdf]]. Please return your answers at latest on March 16 by email attachment to Andreas Hauptmann. Specific instructions are given in the exam itself.
303
304 Exam files: [[attach:2015_home_exam.pdf]], [[attach:2015_home_exam.tex]], [[attach:Hadamard2.jpg]]
305
306 ----
307
308 == Bibliography ==
309
310 [[~[~[image:attach:BookCover2.png~|~|thumbnail="true" width="100"~]~] >>url:http://bookstore.siam.org/cs10/||shape="rect"]]
311
312 [[**Mueller J L and Siltanen S(% style="color: rgb(0,0,0);" %): (%%)**//Linear and Nonlinear Inverse Problems with Practical Applications.//(% style="color: rgb(0,0,0);" %) SIAM 2012.>>url:http://bookstore.siam.org/cs10/||shape="rect"]]
313
314 ----
315
316 == Exercises ==
317
318 Course assistant: [[Andreas Hauptmann>>url:http://wiki.helsinki.fi/display/mathstatHenkilokunta/Hauptmann%2C+Andreas||shape="rect"]]
319 \\The exercise sessions will be held in the computer room **C128**. There are two sessions:
320
321 **Tuesday 12-14**
322 **Thursday 14-16**
323 \\The theoretical exercises are to be presented by the students. In each session the students mark the exercises they have completed and according to this list one student will be chosen per exercise to present.
324
325 The Matlab exercises will be checked individually at the computers present. The Matlab exercises can be completed in pairs of two. Both students have to be present and able to explain the code.
326
327 Points for all completed exercises will be accumulated and part of the final grade.
328
329 (% style="color: rgb(255,0,0);" %)**NOTE!** It has been decided that we will not publish the solutions for future exercises. Please attend the exercise sessions and/or ask your fellow students.
330
331 [[Exercise 1>>attach:Laskari01.pdf]] (January 20-22, 2015)(% class="confluence-link" %)
332
333 [[Exercise 2>>attach:Laskari02.pdf]] (January 27-29, 2015)(% class="confluence-link" %) (%%)\\
334
335 [[Exercise 3>>attach:Laskari03.pdf]] (February 3-5, 2015)
336
337 [[Exercise 4>>attach:Laskari04.pdf]] (February 10-12, 2015)
338
339 [[Exercise 5>>attach:Laskari05.pdf]] (February 17-19, 2015) - M1 & M2 corrected
340
341 [[Exercise 6>>attach:Laskari06.pdf]] (February 24-26, 2015)\\
342
343 ----
344
345 == Project work ==
346
347 Project work assistants: Alexander Meaney and [[Andreas Hauptmann>>url:http://wiki.helsinki.fi/display/mathstatHenkilokunta/Hauptmann%2C+Andreas||shape="rect"]]
348
349 (% style="color: rgb(96,96,96);" %)The idea is to study an inverse problem both theoretically and computationally in (%%)**teams of two students**(% style="color: rgb(96,96,96);" %). The end product is a scientific poster that the team will present in a poster session on
350
351 (% style="color: rgb(96,96,96);" %) (%%)**[[image:attach:Uuzi.gif]]Thursday, May 7, 2015 at 14:15-16:00 **(% style="color: rgb(96,96,96);" %)in the Industrial Mathematics Laboratory (Exactum C131).
352
353 (% style="color: rgb(96,96,96);" %)The poster can be printed using the laboratory's large scale printer. Please send your poster via email as a pdf attachment to Andreas Hauptmann by Tuesday 5th May, 12 pm. Then your poster will be printed by the poster session on May 7.
354
355 The idea of the project work is to study an inverse problem both theoretically and computationally in **teams of two students**. The end product is a scientific poster that the team will present in a poster session in the Industrial Mathematics Laboratory. The poster can be printed using the laboratory's large scale printer. The classical table of contents is recommended for structuring the poster:
356
357 1 Introduction
358 2 Materials and methods
359 3 Results
360 4 Discussion
361
362 Section 2 is for describing the data and the inversion methods used. In section 3 those methods are applied to the data and the results are reported with no interpretation; just facts and outcomes of computations are described. Section 4 is the place for discussing the results and drawing conclusions.
363
364 The project is about **X-ray tomography**. You can measure a dataset yourself in the X-ray facility of the Industrial Mathematics Laboratory:
365
366 == [[image:attach:IMG_1313.jpg||thumbnail="true" width="300"]] [[image:attach:IMG_1345.jpg||thumbnail="true" width="300"]] [[image:attach:IMG_1362.jpg||thumbnail="true" width="300"]] [[image:attach:Rose03B.jpg||width="300"]] ==
367
368 You can choose your own object to image in the X-ray lab. Examples of good objects include a capasitor, excised tooth, or other objects of roughly the size of a fingertip. Please contact Alexander Meaney to find out if your object is good for imaging.
369
370 In the project you are supposed to take a subset of the data with only few projections, such as 20 projection directions. It's a good idea to use one of these methods:
371
372 * Tikhonov regularization based on conjugate gradient method, perhaps with non-negativity constraint,
373 * approximate total variation regularization implemented iteratively with the Barzilai-Borwein method.
374
375 Optimally, you should have an automatic method for choosing the regularization parameter and an automatic stopping criteria for the iteration. These are both difficult requirements, so have a simple approach as plan B if a more complicated approach does not work.
376
377 **First goal consists of two things:** (a) two first sections should be preliminary written in LaTeX (not necessarily in poster format yet) and (b) the Matlab codes at the following webpage should be run and studied:
378
379 * [[X-ray tomography with sparse data>>url:http://wiki.helsinki.fi/display/mathstatHenkilokunta/Matrix-free+X-ray+tomography+with+sparse+data||shape="rect"]]
380
381 Two things will be graded in the meeting about the first goal: (a) the draft of project work and (b) your understanding of the Matlab codes at the above webpage relevant to your topic. The grade represents 30% of the final grade of the project work. Please agree on a meeting time (in the period April 1-4) with the lecturer for reviewing and grading the first goal.
382
383 **Second and final goal:**(% style="color: rgb(96,96,96);" %) poster is presented in the session on May 7. The poster will be printed in size A1. You may create your own poster (from scratch), or you can use e.g. (%%)[[this template>>url:https://wiki.helsinki.fi/download/attachments/113254781/posterA1_templ_IP2014.zip?version=1&modificationDate=1397043033121&api=v2||shape="rect"]](% style="color: rgb(96,96,96);" %) as a starting point and edit its layout, colors, fonts, etc. as much as you like.
384
385 ----
386
387 == Results of the poster projects ==
388
389 The posters have been presented in a poster session on May 7. Each group had 5 minutes to present their project and explain what they have done. The resulting posters can be found as PDF files in the following:
390
391 [[X-ray tomography on a Lego block>>attach:poster_SanteriThomas.pdf]]
392
393 [[Sparse X-ray Tomography using Total Variation>>attach:Poster_RiikkaJuho.pdf]]
394
395 [[X-Ray tomography with sparse data>>attach:poster_SauliIlari.pdf]]
396
397 [[Dental Imaging using Sparse Angle X-ray CT with Tikhonov Regularization>>attach:poster_Meaney_Rantala.pdf]]
398
399 [[X-ray Tomography Project Work Inverse Problems Course 2015>>attach:poster_InvProb2015_HV.pdf]]
400
401 [[Practical X-ray tomography by total variation reconstruction>>attach:Poster Horttanainen Lindberg.pdf]]
402
403 [[Approximate total variation reconstruction of a wisdom tooth cross section from 2-dimensional X-ray projection images>>attach:poster_Bagala&Tuominen.pdf]]
404
405 [[Inverse Problems Project: Pistachio>>attach:poster-hannula-salosensaari.pdf]]
406
407 [[CT imaging of hard materials with beam hardening>>attach:poster_ruuth_latva-aijo_sofiev.pdf]]
408
409 [[Dictionary Based JPEG Artefact Removal>>attach:poster_Petri_and_Anna.pdf]]
410
411 [[Total Variation Regularization with Barzilai and Borwein Optimization Method>>attach:poster_JeSiPa.pdf]]
412
413 [[Matrix-free X-ray tomography with sparse data>>attach:poster_WilleJalo.pdf]]
414 \\And here are some happy students presenting their work. The pictures have been taken during the poster session.
415 \\[[image:attach:DSCF2360.jpg||width="500"]][[image:attach:DSCF2361.jpg||width="500"]]
416
417
418
419 ----
420
421 == Feedback ==
422
423 Feedback was collected in the middle of the course using [[this form>>attach:questionnaire.pdf]].
424
425 Here are the results:
426
427 1. I strongly disagree
428 1. I somewhat disagree
429 1. No opinion
430 1. I agree to some extent
431 1. I strongly agree
432 \\
433
434
435
436 [[image:attach:Feedback.png||width="500"]]
437
438 [[image:attach:Feedback2.png||width="500"]]
439
440
441
442
443
444
445
446