Opettajalinjan peruskurssi, kevät 2008

Last modified by tvikberg@helsinki_fi on 2024/03/27 09:58

Opettajalinjan peruskurssi, kevät 2008 / Okon ryhmä

Luennoija / ohjaaja

FT Okko Kanerva

Laajuus

12 op

Tyyppi

Syventävä opinto.

Luentoajat / seminaaritunnit

ti 10-12 B321, to 12-14 B321 (viikoilla 3-9 ja 11-18; pääsiäisloma 20.-26.3.)

Kuvausta

Kurssi koostuu osallistujien ja ohjaajan (luennoijan) tai vierailijoiden pitämistä alustuksista ja vetämistä keskusteluista. Eri vaiheissa annetaan materiaalia, johon perehdytään muuna aikana ja josta keskustellaan yksityiskohtaisesti yhteisissä istunnoissa. Alustuksia pidetään kokoonpanoltaan vaihtuvissa pienissä ryhmissä. Suoritukseen vaaditaan myös kurssin sisältöä koskevan kevyehkön tentin läpäiseminen. Arvosana pohjautuu tärkeältä osalta muttei suinkaan ainoastaan siihen. (Voi vielä täsmentyä lähiaikoina.)

Suuria teemoja on pari, kolme. Teemat ja tilaisuuksien aiheet kehittyvät — ja aikataulu elää — kurssin myötä, ja tarkka ohjelma ilmoitetaan osallistujille aina mahdollisimman pian. Kahden rinnakkaisen ryhmän sisällöt poikennevat osaksi aiheiltaankin toisistaan. Koko kurssi on ensimmäistä kertaa tämän muotoinen, minkä takia jotkin yksityiskohdat muotoutuvat tilanteen mukaan kurssin kuluessa.

Molemmissa ryhmissä ensimmäinen teema koskee lukualueen laajentamista vaihe vaiheelta, erityisesti reaalilukujen konstruoimista.

Aikataulua

  • Ti 15.1. täytettiin kurssin kehittämiseen liittyvä kyselykaavake sekä esiteltiin kurssin historiaa ja nykyistä uudistusta. Käytiin myös muutama keskustelukierros, joilla tutustuimme toisiimme, syihin yliopistoon tuloon, linjan valintaan, ennakko-odotuksiin ja kokemuksiin yliopistosta yms.
  • To 17.1. jaettiin pienryhmille alustusosuuksia Timothy Gowersin tekstistä reaalilukujen konstruoimisesta desimaalikehitelmien kautta. (Myöhemmin tutustutaan muunlaisiin konstruktioihin.) Johdateltiin aiheeseen.
     Alettiin pohtia edellisen kevään matematiikan ylioppilastutkintotehtäviä ja niiden ratkaisujen arvostelemista.
    Tutustuttiin uuteen jäseneen.
  • Ti 22.1. käsiteltiin em. kokeen pitkän oppimäärän tehtävät 1 ja 2 tarkasti: 3-henkiset pienryhmät muokkasivat ratkaisut (joista aina yksi otettiin yhteiseen keskusteluun) ja laativat mielensä mukaisen pisteytyksen todellisista vastauksista valituille näytetapauksille. Ohjaaja kertoi YTL:n pisteytyssopimuksista, minkä jälkeen pienryhmät sovelsivat sitä näytetapauksiin; tuloksia verrattiin virallisiin.
  • To 24.1. käsiteltiin vastaavasti yo-tehtävät 3 ja 10 (melkein). Jaettiin kuulijoille ensimmäiset alustukset/tiivistelmät.
     Tutustuttiin kahteen uuteen jäseneen. Jaettiin pienryhmille kaksi alustusosuutta lukualueen laajennuksista.

TEEMA 1: Mitä luvut ovat? Lukualueen laajentaminen vaihe vaiheelta

  • Ti 29.1. Jaakko, Juhani ja Lauri alustivat Gowersin tekstin alkupuolesta. Jokaisen piti palauttaa ohjaajalle kirjallisesti lähdetekstiä (Gowersin alku, mielellään myös linkit) koskevat kysymyksensä ja tiivistelmää koskevat kommenttinsa. Alustajat johtivat laajaa keskustelua, joka jatkuu torstaina.
  • To 31.1. jatkettiin tiistaisesta tekstin alkupuolen käsittely valmiiksi. Ruodittiin myös alustajien jakamaa tiivistelmää.
     Puhuttiin kurssin arvosteluperiaatteiden täsmentämisesta; lähiaikoina pidetään lyhyt koko kurssin yhteisistunto, jossa periaatteisiin voivat kaikki ottaa kantaa. Tarkennetut periaatteet astuvat voimaan seuraavalla alustajakierroksella.
  • Ti 5.2. Jukka, Miikka ja Sampo alustavat Gowersin tekstin loppupuolesta, joka käsitellään vastaavasti kuin alkupuoli.
  • To 7.2. jatkettiin tiistaisesta valmiiksi. Gowersin tekstiä ja tiivistelmiä koskevien kirjallisten kysymysten ja kommenttien puinti jatkuu kuitenkin vielä ensi kerralla.
  • Ti 12.2. kokoonnuttiin aluksi Erikin ryhmän kanssa keskustelemaan kurssin arvosteluperiaatteista. Sitten jatkettiin omassa ryhmässä Gowers-puintia.

Seuraavaksi tarkastellaan huolellisesti lukujoukkojen konstruktioita Lauri Myrbergin suomenkielisten oppikirjojen pohjalta; lukualuetta laajennetaan vaihe vaiheelta: N->Z->Q->R. Okko (ja mielellään muutkin) pohjusta(v)a(t) tätä alustamalla mm. teknisestä ekvivalenssirelaation käsitteestä. Esitietoja puidaan tarpeen mukaisessa laajuudessa.

  • Ti 20.2. pohjustus päästiin loppuun ja Helle, Ilona ja Salla aloittivat alustuksensa lukualueen laajentamisesta luonnollisista luvuista kokonaislukuihin ("N->Z"). Varsinainen alustus ja keskustelu sen pohjalta päättyi ti 27.2.
  • To 28.2. täytettiin kurssin kehittämiseen liittyvät kyselykaavakkeet ja käytiin periodin III päätteeksi keskustelua aiheesta "Miksi ihmeessä kouluopettajille opetetaan yliopistomatematiikkaa?", jossa yhteydessä myös ideoitiin tämän kurssin loppuosaa.
     Mainittiin myös IV periodin kurssi Koulumatematiikan peruskäsitteistä, joka täydentänee tätä kurssia koulukirjojen käsittelyn osalta.
  • Ti 11.3. keskusteltiin vaiheen "N->Z" kirjallisista ja muista kysymyksistä. Cenan, Matti ja Pekka alkoivat alustaa lukualueen laajennusvaiheesta "Z->Q".
  • Ti 18.3. keskusteltiin vaiheen "Z->Q" kirjallisista ja muista kysymyksistä. Helle, Jaakko ja Matti alkoivat alustaa lukualueen laajennusvaiheesta "Q->R" (alkupuoli). Koska kurssilla on jo saavutettu kokemusta lukukonstruktioista, keskitytään istunnoissa vaiheen "Q->R" osalta tärkeimpiin kysymyksiin ja jätetään muun ymmärtäminen itsenäisen työskentelyn varaan.
     Näin toisen alustuskierroksen alkaessa otettiin käyttöön täsmennetyt arvosteluperiaatteet ja -menetelmät, mm. arviointilomake.
  • To 3.4. Ilona, Pekka ja Salla alkoivat alustaa lukualueen laajennusvaiheesta "Q->R" (loppupuoli).

TEEMA 2: Opettaako tätäkin koululaisille? Rajamailla

Laaditaan "paketteja" koulukäyttöön, mitä ennen tutustutaan aiheisiin syvemmin. Realismia on syytä noudattaa siinä, miten asiat voidaan ymmärtää koulussa, muttei siinä, missä määrin paketit mahtuvat koulujen (nykyisiin) tunti- tai kerhoaikatauluihin.

Aiheita voivat kurssilaiset ehdottaa esim. sähköpostissa. Alun perin kaavailuissa oli seuraavia: mahtavuus ja äärettömyys, fraktaalit, desimaalikehitelmät, ketjumurtoluvut, (topologia, homotopia?).

Tässäkin kaikille jaetaan etukäteen taustamateriaalia. Nyt kuitenkin sen käsittely jätettäneen lähes kokonaan kotityöksi: istunnoissa pääpaino on kouluun tarkoitettujen pakettien puimisessa. Aikaisempaan tapaan kolmikko jakaa tuotostaan muille noin viikkoa ennen esitystä.

  • To 10.4. Cenan, Jukka ja Lauri alustivat opetuspaketistaan, joka käsittelee joukko-opillista mahtavuuden käsitettä ja äärettömyyttä.
  • Ti 15.4. Juhani, Miikka ja Sampo alustivat opetuspaketistaan, joka käsittelee rationaali- ja irrationaalilukujen "ihmeitä" (sekä yksittäisten lukujen että lukujoukkojen tasolla; algebraa ja topologiaa).
  • To 17.4. Helle, Juhani ja Jukka alustivat opetuspaketistaan, joka käsittelee rationaali- ja irrationaalilukuja (mm. desimaalikehitelmiä; analyysiä ja mittateoriaa).

TEEMA 3: Koulukirjoja kriittisin silmin. Matemaattisia ja didaktisia huomioita

  • Ti 22.4. Jaakko, Pekka ja Sampo: "Luvuista ja niiden merkitsemisestä".
  • To 24.4. Cenan, Miikka ja Salla: "Funktio, raja-arvo ja derivaatta". [ Kohdemateriaalia ]
  • Ti 29.4. Ilona, Lauri ja Matti: "Vain eli kun — sanoista ja logiikasta".
     Tätä ennen, noin klo 10.00 alkaen Piia esitteli kurssin kehittämiseen liittyvää tutkielmaansa (sis. kyselytuloksia). Keskusteltiin kurssin kehittämisestä.

Tentti

Tiistain 13.5.08 yleistentin yhteydessä klo 12-16 (auditorio A111). Ilmoittautumista ei tarvita.

Kokeessa on erityyppisiä tehtäviä, joissa tentataan sekä matemaattisten että didaktisten asioiden hallintaa. Se perustuu kaikkeen siihen kirjalliseen materiaaliin, jota on jaettu tai johon on viitattu, sekä myös seminaari-istuntoissa esitettyyn ja keskustelujen yhteydessä saatuun ymmärrykseen. Tasapuolisuutta parannetaan sillä, että tehtävissä on valinnaisuutta.

Tenttitilaisuudessa (tai ehkä mieluummin hieman myöhemmin) voi laatia ja palauttaa itsearvioinnin, joka on oleellinen kurssisuorituksen osa.

Kurssikysely

  • Laitos pyytää opiskelijoita vastaamaan anonyymisti kurssikyselyihin viimeisen kurssikokeen tai tentin jälkeen. Tällä kurssilla vastauksessa on ilmoitettava myös ryhmän ohjaaja (esim. kurssin nimen perässä). Vaikka kurssi on muodoiltaan varsin poikkeava, useimmat vakiokysymykset soveltuvat.
     Näiden tulokset tulevat myöhemmin julkisiksi.
  • Tämän kurssin erityisluonteen ja kehittämisvaiheen takia tentin yhteydessä järjestetään myös täydentävä kurssikysely, jonka vastaus palautetaan anonyymisti tenttisalissa.

Tulokset

Tentin pisteet. Koko kurssin suoritukset.