
INTRODUCTION TO MATHEMATICAL BIOLOGY

HOMEWORK SOLUTIONS

September 26, 2016

Exercise 2.1

(a) We can solve the logistic equation by separation of variables:∫ N(t)

N0

dN(
1− N

K

)
N

=

∫ t

0
r0ds (1)

By solving the integral at the left-hand side, we obtain the explicit solution

N(t) =
KN0

N0(1− e−r0t) +Ke−r0t
.

Remark: instead of using separation of variables, you can use the change of variable x =
K/N and solve the equivalent linear equation for x by using the variation of constants
formula.

(b) Assume r0 > 0. Then, by taking the limit t→∞, we easily obtain

lim
t→∞

N(t) = K

for any initial value N0. Hence K is globally stable.
(c) Let NT = N(Tτ). Since the logistic equation is autonomous, the initial time does

not matter, but only the initial value. Hence, to get the value NT+1 we can use the explicit
solution (1) for t = τ and N0 = NT , and rearrange the terms:

NT+1 =
KNT

NT (1− e−r0τ ) +Ke−r0τ

=
er0τNT

1 + 1
K (er0τ − 1)NT

=
λNT

1 + αNT

with
λ = er0τ , α =

er0τ − 1

K
.

Exercise 2.2

Given the rates, we can write the following ODE model for the density N of individuals:
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dN

dt
= bN − µN − pβN2

= (b− µ)

(
1− N

b−µ
pβ

)
N

hence it is in the standard form of the logistic equation, with

r0 = b− µ, K =
b− µ
pβ

.

Exercise 2.3

The nontrivial equilibrium is

N̂ = K − Kβ

r0
E.

Denote

h(E) = βN̂E = βKE − Kβ2E2

r0
.

the harvest rate at equilibrium. We notice that h(E) is a parabola which attains its
maximum at E∗ = r0

2β . The equilibrium value corresponding to E∗ is

N̂∗ = K − Kβ

r0

r0
2β

=
K

2
.

Intuitively, you should keep the population at the value K/2 because this is the value at
which the growth rate of the population is maximal.

Finally, notice that

Ĥ∗ = βN̂∗E∗ =
Kr0
4
.

Exercise 2.4

We use the explicit solution (1) calculated in Exercise 2.1, with initial value NH −H
up to time t = T

N(T ) =
K(NH −H)

(NH −H)(1− e−r0T ) +Ke−r0T

Then, we impose that N(T ) = NH and we solve for H as a function of T and NH (you
can also directly use the calculation for the Beverton-Holt model of Exercise 2.1(c)).

We obtain

H =
NH(K −NH)(1− e−r0T )
K −NH(1− e−r0T )

= NH −
NHKe

−r0T

K −NH(1− e−r0T )
=: h(NH)
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and we need to maximize h with respect to NH .
In particular,

h′(NH) = 1− Ke−r0T (K −NH(1− e−r0T )) +NHKe
−r0T (1− e−r0T )

(K −NH(1− e−r0T ))2

= 1− K2e−r0T

(K −NH(1− e−r0T ))2

and

h′(N∗H) = 0⇔ (K −NH(1− e−r0T ))2 = K2e−r0T

⇔ N∗H =
1− e

−r0T
2

1− e−r0T
K

and this is actually a maximum (check second derivative or sign of h′).
The maximal harvest is

H∗ = h(N∗H) = N∗H −
N∗HKe

−r0T

K −N∗H(1− e−r0T )

=
1− e

−r0T
2

1 + e
−r0T

2

K

(b) We have

H∗

T
=
K

T

1− e
−r0T

2

1 + e
−r0T

2

We can now compute the derivative with respect to T :

d

dt

H∗

T
=
K

T

r0
2 e

−r0T
2 (1 + e

−r0T
2 ) + (1− e

−r0T
2 ) r02 e

−r0T
2

(1 + e
−r0T

2 )2
− K

T 2

1− e
−r0T

2

1 + e
−r0T

2

=
K

T 2(1 + e
−r0T

2 )2

[
e−r0T + Tr0e

−r0T
2 − 1

]
Consider the function g(x) = e−2x + xe−x − 1. Then g(0) = 0 and

g′(x) = e−x
(
1− x− 2e−x

)
< 0 for all x 6= 0

hence we conclude that d
dt
H∗

T < 0 for all T > 0 (i.e., is better to harvest often when the
population has the highest growth rate).

Exercise 2.5

(a) The problem here is that we are assuming to harvest fish at a constant rate, even in
the situation when there is no fish left. This translates into the fact that the mathematical
model is not positivity preserving: it may predict negative population densities, which is
clearly not biologically meaningful.
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We can consider a model where we harvest at a constant rate H > 0 as long as the
population density is positive, i.e.,

harvest rate h(N) =

{
H if N > 0

0 if N = 0.

and the ODE model is
dN

dt
= r0

(
1− N

K

)
N − h(N).

(b) The equilibria are N = 0 and N∗ > 0 such that

r0

(
1− N∗

K

)
N∗ −H = 0

(notice that we may have 0, 1, or 2 equilibria depending on the values of the parameters
r0,K,H → fold bifurcation).

The model exhibit Allee effect because the growth rate is negative close to N = 0.
(c) There exists a stable positive equilibrium if and only if

0 ≤ H < Hcr,

where
Hcrit = max

N≥0

[
r0

(
1− N

K

)
N

]
=
r0K
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For H ≥ Hcrit, there exists no positive stable equilibrium and the population goes extinct.
Notice that the critical harvest rate Hcrit coincides with the maximal harvest rate H∗ of

exercise 2.3, but now the harvest is constant independently of the population density (which
is the mechanism leading to the extinction of the population), while in the previous exercise
the harvest rate was relative to population size, allowing a positive stable equilibrium to
occur.
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