On the origin of species

gaps not filled by interbreeding: reproductive isolation

gaps not filled by other species: limiting similarity

Limiting similarity

A classical approach based on Lotka-Volterra competition

Lotka-Volterra competition

Population dynamics:

$$\frac{dN_i}{dt} = r_i N_i \stackrel{\text{\'e}}{\text{\'e}} - \frac{\stackrel{\text{\'e}}{a} a_{ij} N_j \stackrel{\text{\'u}}{\text{\'e}}}{K_i} \stackrel{\text{\'u}}{\text{\'e}}$$

- n Equilibrium: $\mathbf{A}\mathbf{N} = \mathbf{K}$, $[\mathbf{A}]_{ij} = a_{ij}$, $[\mathbf{K}]_i = K_i$ $\mathbf{N} = \mathbf{A}^{-1}\mathbf{K}$ positive?
- Trait-dependent competition: $a_{ij} = a(x_i, x_j) = \exp \begin{cases} \frac{2}{5} & \frac{(x_i x_j)^2}{25} & \frac{0}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{cases}$
- Equidistant spp: $a_{i,i\pm 1} = \exp \frac{a}{2s^2} \frac{d^2}{\dot{g}} = a < 1$, $\alpha_{i,i\pm k} = a^{k^2}$

n Constant carrying capacity: $K_i = K(x_i)$ of 1 (**K** = **1**)

n 2 species:
$$\mathbf{A} = \mathbf{\xi} \begin{bmatrix} \mathbf{a} & \mathbf{\ddot{o}} \\ \mathbf{\dot{\xi}} \\ \mathbf{a} \end{bmatrix}$$

$$\mathbf{N} = \mathbf{A}^{-1}\mathbf{K} = \frac{1}{1 - a^2} \overset{\text{el}}{\overset{\text{el}}}}{\overset{\text{el}}{\overset{\text{el}}}{\overset{\text{el}}{\overset{\text{el}}{\overset{\text{el}}{\overset{\text{el}}{\overset{\text{el}}{\overset{\text{el}}{\overset{\text{el}}{\overset{\text{el}}{\overset{\text{el}}}{\overset{\text{el}}{\overset{\text{el}}}{\overset{\text{el}}}{\overset{\text{el}}}}}{\overset{\text{el}}}}}{\overset{\text{el}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

no limiting similarity

n 3 species:
$$\overset{\text{@l}}{\underset{\overset{\overset{}}{\overset{}}{\overset{}}}{\overset{}}}$$
 $\overset{\text{@l}}{\underset{\overset{}}{\overset{}}}$ $\overset{\text{@l}}{\underset{\overset{}}{\overset{}}}$ $\overset{\text{@l}}{\underset{\overset{}}{\overset{}}}$ $\overset{\text{@l}}{\underset{\overset{}}{\overset{}}}$ $\overset{\text{@l}}{\underset{\overset{}}{\overset{}}}$ $\overset{\text{@l}}{\underset{\overset{}}{\overset{}}{\overset{}}}$ $\overset{\text{@l}}{\underset{\overset{}}{\overset{}}}$ $\overset{\text{@l}}{\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}$ $\overset{\text{@l}}{\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}$ $\overset{\text{@l}}{\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}$ $\overset{\text{@l}}{\overset{\overset{}}{\overset{\overset{}}}}$ $\overset{\text{@l}}{\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}$ $\overset{\text{@l}}{\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}$ $\overset{\overset{}}{\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}$ $\overset{\overset{}}{\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}}$ $\overset{\overset{}}{\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}$ $\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}$ $\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}$ $\overset{\overset{}}{\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}}$ $\overset{\overset{}}{\overset{\overset{}}{\overset{}}{\overset{\overset{}}{\overset{}}}}}$ $\overset{\overset{}}{\overset{\overset{}}{\overset{}}}}$

$$a = \exp \frac{\partial^{2} - 2\alpha + 1}{\partial s^{2}} = \exp \frac{\partial s}{\partial s^{2}} = \frac{d^{2}}{\partial s^{2}} = \frac{\partial s}{\partial s^{2}} = \frac{\partial s}{$$

limiting similarity

Equilibrium densities near the minimal separation

Non-constant carrying capacity

- n Linear K: K(x) = 1 + 2bx
- n 2 species: $x_1 = -d/2$, $x_2 = d/2$; s = 1; recall $a = \exp(-d^2/2s^2)$

limiting similarity for 2 spp

also maximum separation (sp 2 is favoured)

K too steep: no coexistence

Can similar species coexist?

Constant K

Non-constant *K*

Can similar species coexist?

I can make any species coexist (and at any densities)!
if I may choose the K's

$$K = AN$$

Fine tuning of parameters makes coexistence possible

- n If there are more consumer species than resources, then
 - A is singular (neutral coexistence)
 - K must be in the range of A, which has zero volume; the slightest perturbation destroys coexistence

Can similar species coexist?

 \mathbf{n} $a_{ij} = a(x_i, x_j)$ depends on the trait values continuously

if x_i and x_k are similar, then $a_{ij} \gg a_{kj}$ for all j and therefore **A** is nearly singular

n K must be in the range of A, which has small volume; a small perturbation destroys coexistence

Coexistence of similar species is possible but not robust

(Meszéna et al. 2006, Theor. Pop. Biol.)

Can infinitely many species coexist?

n Gaussian *K:* infinitely many species can coexist

$$K(x) = \mathop{\bigcirc}_{-4}^{4} (x \not - x) N(x \not - x) dx \not - x$$

convolution of Gaussians is Gaussian: N(x) is Gaussian with $s_N^2 = s_K^2 - s_K^2$

but 2 similar species cannot (unless near the peak)

~ linear K

Can infinitely many species coexist?

n Gaussian *K:* infinitely many species can coexist

$$K(x) = \mathop{\bullet}_{-4}^{4} (x - x) N(x - x) M(x - x)$$

convolution of Gaussians is Gaussian: N(x) is Gaussian with $s_N^2 = s_K^2 - s_K^2$

but not if the Gaussian K is perturbed

not structurally stable

trait (x)

Limiting similarity

The more similar the species are, the smaller is the region of parameter space where they coexist, making coexistence unlikely (= not robust).

(Meszéna et al. 2006, Theor. Pop. Biol.)