Introduction to Mathematical Biology
Eixercises 9.1-9.5

9.1. Coezistence of year classes in semelparous populations with density-dependent fecun-
dity. Consider a population of a biennial organism, i.e., one that lives for at most two
years and reproduces only when 2 years old. Population density affects only the effective
fecundity; hence we shall assume that survival from age 1 to age 2 is constant and the
number of offspring produced per reproducing individual is a decreasing function of total
population size, N1 + N5. The population therefore grows according to
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Let the density-dependent fecundity be given by F/(N) = 395. We have seen in the lec-

ture that whenever this population has a positive equilibrium vector N, this equilibrium
is unstable.

A population of biennial organisms consists of two sub-populations or ”year classes”:
one year class reproduces in odd years, the other reproduces in even years. If F' were
constant, the population growth of the two year classes would be independent of one an-
other; but here the two year-classes interact via density-dependence (F(N)).

(a) Assume that the initial population consists of only one year class, i.e., the initial
population vector is of the form N(0) = (N;(0),0)”. Show that this population converges
to a 2-cycle such that in every odd year the population vector is (0, N )T, whereas in every
even year it is (N/P,0)7. (Hint: use the second iterated map to show convergence.)

(b) Show that this population is stable against introducing the missing year class at a
low density: An initial population N(0) = (N /P, )T with sufficiently small e will converge
to the 2-cycle described above, so that it will lose the year class introduced at density e.
Explain verbally why the initially rare year class is excluded.

9.2. An alternative model for the coezistence of year classes. As an alternative to the
model in equation (1) above, assume that fecundity at age 2 depends on the population
density of the 2-year old individuals only. This is the case, for example, when biennial



plants are limited by their pollinator insects: the 1-year old plants do not flower and hence
do not compete for pollinators. The model then becomes

N(t+1) = ( . F(NO?“)) )N(t) 2)

Assume F(N) = as above.
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(a) Carry out the invasion analysis as in part (b) of the previous exercise. Explain
verbally why the result is different.

(b) Show that the nontrivial equilibrium of (2) is asymptotically stable whenever it is
positive, so that in the present model, the two year classes coexist at a stable equilibrium.

9.3. Ry in a size-structured population.

(a) To derive Ry in a population structured by body size, we first build a simple model for
how the body size of an individual grows during its lifetime. Let z(a) denote the length
of the body at age a, with length at birth x(0) = z, given. We assume that the shape of
the body remains the same, so that the organism’s surface is given by S(a) = c[z(a)]* and
its mass (proportional to volume) is M(a) = v[x(a)]® at all ages. Suppose the food an
individual obtains is proportional to its surface, whereas the amount of resources used for
self-maintenance and reproduction is proportional to its mass. This yields a differential
equation for mass,
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Show that the length at age a is given by the Von Bertalanffy equation for body size,
2(a) = Too — eI (20 — 1)

where 7., = lim, ., z(a) is the asymptotic size to be determined from the parameters
above.

(b) Assume that the birth rate is proportional to body size (b(x) = fz) and the death
rate is constant (u). Calculate Ry. (It would be more realistic to assume that the birth
rate is proportional to body mass, not length; this results in a lengthier integral.)

9.4. Ry with stochastic growth of body size. Extend the previous exercise assuming that at
birth, each individual gets a random environment £ (e.g. a territory of variable quality).
The distribution of £ is given by the probability density function f such that £ takes a
value between ¢ and & 4 d¢ with probability f(€)d¢. An individual’s environment remains
fixed for life and determines the food intake per unit surface, i.e., a in the above model
becomes a function of &.

(a) Calculate Ry. (Important hint: Because the environment is fixed for life, there is a
shortcut to spare the calculation of F(z,a).)
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(b) Optional: Express F(z,a) (see lecture).

9.5. A model with discrete time and continuous structure. Consider a population where
spatial location x determines the effective fecundity F'(x) and the probability that an
adult survives till the next year, P(z). For simplicity, we take a 1-dimensional physical
space so that x € R. The offspring are dispersed around the location of their parent, so
that an offspring of a parent at x lands at a location between ¢ and £ 4 d¢ with probability
¢(§ — x)d€. The adults are sessile (do not move). Let Ny(x) be the population’s density
function in year ¢ just before reproduction.

(a) Express Nyyq(z).
(b) Extend this model to a population which has also age structure, such that a k-year
old individual at location x has fecundity Fj(z) and survival probability Py(x).

+1. Stability conditions for 2x 2 Jacobians. For a 2 x 2 Jacobian, the characteristic equa-
tion is A2 —tr A+det = 0 (where tr and det are respectively the trace and the determinant
of the Jacobian). Find the pairs (tr, det) for which the Jacobian has a complex conjugate
pair of eigenvalues with absolute value 1 (A, = e**®). This completes the derivation of
the "triangle of stability” we discussed in the lecture.



