
Introduction to Mathematical Biology
Exercises 8.1-8.4

8.1. Age-structured populations. Consider an age-structured population with a primitive
Leslie-matrix. Denote, as usual, the fecundity and survival probability of age class i with
Fi and Pi, respectively. Let l1 = 1, li =

∏i−1
j=1 Pj for i = 2, ..., ω, and let λ, u, and v be

respectively the dominant eigenvalue and the corresponding right and left eigenvector of
the Leslie-matrix. Prove that

(a) at the stable age distribution, the frequency of age class i is proportional to li/λ
i;

(b) the reproductive value of age class i can be written as vi = 1
λ
(Fiv1 + Pivi+1) (with

Pω defined to be zero such that the second term is zero for i = ω). This means that
the reproductive value of age i is the reproductive value represented by the offspring pro-
duced at age i (given by Fiv1) plus the reproductive value of the next age class in case
the individual survives (Pivi+1), discounted by factor λ because one year of time is spent
(cf. exercise 7.5).

Use the above results to demonstrate that
(i) all post-reproductive age classes have zero reproductive value (vj = 0 for all j such

that Fi = 0 for i ≥ j);
and, assuming λ ≥ 1 (the population does not die out),

(ii) the frequency of age classes decreases with age;
(iii) if there are k pre-reproductive age classes (Fi = 0 for i = 1, ..., k but Fi > 0 for

some i > k), then the reproductive value increases from age 1 through age k.

8.2. Elasticity. The lecture introduced the sensitivity of the population growth rate λ to
an element of its projection matrix A = [aij],

sij =
∂λ

∂aij
= viuj

where vi and uj are the ith and jth elements of the leading left and right eigenvectors,
respectively, with scaling such that vTu = 1. Elasticity is a related measure that expresses
the relative (”percentage”) change of λ with respect to a relative change in aij:

eij =
∂λ

∂aij

aij
λ
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Prove that
∑

i,j eij = 1. Because elasticities are non-negative and the sum of all elastici-
ties is 1, it is easy to judge if a certain elasticity value is high or low (i.e., relative to 1).

8.3. Conservation of endangered species (simplified from Crouse et al. 1987). As for
many species, survival and fecundity of sea turtles depend on their size. The population
is divided into three classes: the smallest individuals (<10 cm) are called juveniles, these
are all 1-year old; the intermediate class (10-85 cm) contains sub-adults, an individual
remains sub-adult possibly for many years; and the fully grown individuals (>85 cm) are
adults. Only adults reproduce, and an adult female produces 60 female juveniles by the
next year. Juveniles survive with probability 0.6 and become sub-adults when they are
2-year old. Sub-adults grow slowly: with probability 0.7, sub-adults remain sub-adults
also in the next year, and only with probability 0.001 they become adults (the rest of sub-
adults die). Once in the adult class, the turtles survive till the next year with probability
0.8.

The leading eigenvalue of the projection matrix is λ = 0.95, which means that the
turtles are dying out. There are two possible policies to save the population: (i) we can
protect the beaches where the eggs are laid to avoid that the newborn die before they
reach the sea, and thereby increase the (effective) fecundity; or (ii) we can apply a spe-
cial device on fishing nets to avoid catching adults, and thereby increase adult survival.
Suppose increasing the survival of the newborn (and therefore the effective fecundity) by
1% costs A, whereas increasing adult survival by 1% costs B. Evaluate the elasticities to
judge which policy is more effective; should we invest the available money into protecting
the beaches or protecting the adults?

8.4. Next generation matrix. Consider the plant population described in exercise 7.2 with
the projection matrix

A =

 0 0 S
s1 (1− p)s2 V
0 ps2 s3


where S and V are respectively the number of seedlings and number of vegetatively pro-
duced juveniles per adult plant, s1 is the probability that a seedling survives (in which
case it becomes a juvenile), s2 is the probability that a juvenile survives, in which case
it matures into an adult plant with probability p and remains a juvenile with probability
1− p, and s3 is the probability that an adult survives (in which case it remains an adult).

(a) Consider producing a seedling and producing a new juvenile by an adult as ”birth”,
so that there are two birth states (seedling, juvenile). Formulate the next generation ma-
trix (it is enough to obtain the 2× 2 block that corresponds to the birth states, i.e., K1

in the notation of the lecture) and obtain R0.

Hint 1: You can calculate the elements kij of the next generation matrix directly (so
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that you can avoid inverting a 3× 3 matrix). For k11, calculate from the life cycle graph
the probability that a seedling ever becomes an adult, the expected lifetime of an adult,
and from these, the expected number of new seedlings produced per one seedling at the
start; and analogously for the other elements kij. To find out what is the probability of
getting through the juvenile phase (which may last for several years), use the method of
first step analysis. Let q be the probability that a juvenile ever becomes an adult (i.e.,
does not die as a juvenile). A juvenile becomes an adult in the next year with probability
ps2, whereas with probability (1 − p)s2 the juvenile remains a juvenile in the next year
and hence has probability q to become an adult some time later. Therefore we have the
equation q = ps2 + (1− p)s2q for q.

Hint 2: Notice that the resulting next generation matrix is singular. This is nice
because it is easy to find the eigenvalues. But you may want to contemplate why we get
a singular next generation matrix in this model.

(b) Alternatively, consider only seedling production as ”birth”, so that there is only
one birth state (seedlings). Here we need to assume that V is not too large. Write the
projection matrix as A = F + T with only seedling production as birth, and find the
condition that V has to satisfy for the next generation formalism to be applicable (cf.
lecture). Find R0.

Hint 3: With a single birth state, the block K1 is 1× 1, i.e., a single number, which is
R0 itself. It is possible to calculate this number directly as suggested in (a). If this seems
too complicated and you resort to inverting a 3 × 3 matrix, notice that in this problem
you will use only the last row of the inverse, so it is enough to calculate the three elements
of the last row.

(c) Somewhat surprisingly, (a) and (b) yield different expressions for R0. Intuitively,
the reason is that a generation is shorter in (a) than in (b), so that the same real-time
population growth gives a lower value for R0 in (a) than in (b). However, for both versions
λ R 1⇔ R0 R 1 must be true (where λ is the leading eigenvalue of the projection matrix
A; cf. lecture). Show that indeed R0 obtained in (a) is greater than 1 if and only if R0

obtained in (b) is greater than 1, so that the two versions make the same prediction as
to whether the population grows or declines. (Recall that predicting growth vs decline is
the goal of calculating R0; if we need the actual speed of growth or decline, we need to
obtain the annual growth rate, i.e., λ itself.)
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