Introduction to Mathematical Biology
FEixercises 7.1-7.5

7.1. Spatial structure. Suppose a population lives in two habitats (two separate spatial
locations, like butterflies in two meadows, fish in two bays of a lake, etc.). Two events
take place in each year: (1) the population grows p;-fold in habitat ¢ (i = 1,2); and (2)
a fraction m of the individuals disperse, i.e., leave their habitat and move towards the
other. Dispersal is a risky process: Dispersing individuals enter the opposite habitat with
probability s and die with probability 1 — s.

(a) Construct the projection matrix of this population.

(b) Suppose that dispersal is very risky, s — 0. What is the condition for viability, which
ensures that the population does not die out?

7.2. Plant reproductive strategies. Plants can reproduce via seeds as well as via vegetative
propagules. In the latter case, rhizomes (underground stems) or runners (horizontally
growing stems) grow new roots at some distance from the parent plant, and subsequently
sever the connection to the parent plant such that the propagule becomes an independent
individual. Suppose that full-sized flowering plants produce S seeds and V' vegetative
propagules each year. All seeds germinate and become small seedlings by the next cen-
sus, whereas the vegetative propagules (which start much bigger than seeds) become
intermediate-sized juvenile plants by the next census. Unless they die, the seedlings reach
juvenile size by the second census of their life. Juvenile plants may die, may remail
juvenile-sized or may grow into full-sized flowering plants. Flowering plants remain in the
same state until they die. Construct the projection matrix of this population.

7.3. Powers of primitive matrices. Diagonalize the Leslie matrix

0.6 1.1
t=(03 )
and use the diagonalized form to compute the ten-year projection matrix L°. Is the result
close to a singular matrix? Why? What is the stable age distribution of this population?

7.4. Life cycle graphs. Decide for each of the life cycle graphs whether the corresponding
projection matrix is irreducible and whether it is primitive. Describe possible biological
scenarios that lead to these graphs. Summarize what type of qualitative behaviour these



populations would show and what predictions can be made if the nonzero elements of the
projection matrices are given.
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7.5. Reproductive value. The element a;; of a population projection matrix A denotes the
expected number of descendants in state ¢ produced in one year’s time by an individual
in state j. Descendants include the individual itself if it survives and moves from state
j to state 7, plus any surviving offspring who are in state i. Suppose that the projection
matrix is primitive. Recall that the reproductive value of an individual in state j is the
jth element of the leading left eigenvector v’ used in the diagonalization of A.

(a) Show that the reproductive value of an individual equals the sum of the reproduc-
tive values of all its descendants in the next year divided with the annual growth rate A
(leading eigenvalue). The reproductive value measures the contribution of an individual
to the population in the far future (cf. lecture). In this light, explain in words why the
descendants’ reproductive value is discounted by the division with A. (In simpler terms,
explain why the division is there; why a descendant in state ¢ contributes v; /A rather than
v; to the individual’s own reproductive value.)

(b) Suppose the population has achieved its stable state distribution. Let v denote the
reproductive value of a randomly chosen individual. Show that the expected value of v is 1.

(c) Suppose again that the population has achieved its stable state distribution.
Choose an individual at random and calculate the expected reproductive value of its
descendants in the next year. Show that this equals the population growth rate .



