
Introduction to Mathematical Biology
Exercises 4.1-4.4

4.1 Enzymes with two substrates. Many enzymes catalyse reactions between two substrates
as they create a chemical bond between two different molecules (e.g. link glucose and
fructose to make sucrose, which is the common table sugar). These enzymes must bind
both substrates before the reaction can take place. Assume that the two substrates S1

and S2 are bound (and possibly released) in a fixed order: S2 can bind to the enzyme
only if the enzyme has S1 already bound. The chemical reactions are then as follows:

E + S1

k1


k−1

X1, X1 + S2

k2


k−2

X2, X2

k3
→ E + P

(a) Extend the Michaelis-Menten model (discussed in the lecture) to the above system.
Identify the fast and the slow processes.
(b) Find the quasi-equilibrium of the fast processes. (You may assume that this equilib-
rium is stable.)
(c) Obtain a differential equation for the concentration of the product (P ). Compare this
equation to the analogous equation in the Michaelis-Menten model. Investigate the limits
when (i) the concentration of S1 goes to infinity; (ii) the concentration of S2 goes to infin-
ity. Show that in both cases, we recover the simple Michaelis-Menten kinetics discussed
in the lecture, but with different parameters.

4.2 Prebiotic replicators. It is thought that before the emergence of life proper, RNA-like
molecules were replicating themselves in an autocatalytic reaction, where the replication
of one RNA molecule is helped by another (identical) RNA molecule acting as an ”RNA-
enzyme” called ribozyme. In this autocatalytic reaction, the replication rate (”birth rate”)
of a given copy of the RNA molecule, bx, is proportional to the concentration of RNA,
x, because to replicate one copy, another is needed as a ribozyme (this is quite similar
to sexual reproduction, where one individual, the female, needs another individual, the
male, to be able to reproduce). In addition to the autocatalytic reproduction, RNA
molecules replicate also spontaneously without catalysis by another RNA molecule (as if
a female gave birth without a male), at some (low) rate a. The speed of replication is also
proportional to the concentration of free monomers from which RNA is synthesized (i.e.,
”food”), c. The RNA molecules decay at a constant rate µ. The concentration of RNA
therefore changes according to
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dx

dt
= [ac(t) + bx(t)c(t)− µ]x(t)

The total number of monomers, including free monomers and monomers incorporated
into an RNA molecule, is constant. One RNA molecule contains k monomers. We there-
fore have that c(t)+kx(t) = c0 is constant, and we can use this conservation law to rewrite
the model into an autonomous ODE,

dx

dt
= [(a+ bx(t))(c0 − kx(t))− µ]x(t)

Perform a bifurcation analysis of this model with respect to the decay rate µ.

4.3 Selection in the logistic model for bacterial growth. Recall the model we used to derive
logistic growth for bacteria limited by some nutrient,

dN

dt
=

(
b[c0 − kN ]− µ

)
N

where k > 0 is the amount of nutrient necessary to make one bacterium, c0 > 0 is the
total amount of nutrient of which kN is incorporated into N bacteria, and reproduction
is proportional to the amount of free nutrient [c0 − kN ]; death occurs at a constant rate
µ > 0. Here the nutrient is e.g. an essential amino acid or iron, which does not reproduce
like a prey species and is not replenished from the outside but is freed when a bacterium
dies. Suppose that n bacterial strains grow together using the same resource. Each strain
has its own characteristic parameters bi, ki and µi, so that we have the system of ODEs

dNi

dt
=

(
bi
[
c0 −

n∑
j=1

kjNj

]
− µi

)
Ni

for i = 1, ..., n. Show that in this model, natural selection maximizes the value of b/µ
at equilibrium. (Note that ki is also a property of a strain but it is irrelevant in natural
selection.)

4.4 Population dynamics and selection with environmental pollution. Consider n different
strains of bacteria that grow together and produce the same toxic substance that pollutes
their environment. The joint population dynamics is given by

dNi

dt
= biNi − (µi + ρT )Ni

dT

dt
=

n∑
i=1

αiNi − δT

for i = 1, ..., n. T (t) is the concentration of the toxin, which is produced at rate αi > 0
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by strain i and decays exponentially at rate δ > 0. bi > 0 and µi ≥ 0 are the (constant)
birth rate and background death rate of strain i, respectively, and the toxin kills at a rate
proportional to its concentration, ρT (t) (same for each strain). Assume that the toxin is
produced and decays much faster than the bacteria (bi and µi for all i and ρ are much
smaller than αi and δ), so that the toxin concentration achieves a quasi-equilibrium T̂ .

(a) Show that the population size of a single strain (n = 1) grows according to the logistic
model.
(b) Show that when several strains grow together, density dependence is nonselective
such that the strain(s) with the highest intrinsic growth rate bi−µi spreads and all other
strains go extinct.
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