
Introduction to Mathematical Biology
Exercises 2.1-2.5

2.1 Logistic population growth. (a) Solve the ODE of logistic population growth,

dN
dt

= r0

(
1 −

N(t)
K

)
N(t) (1)

given the initial condition N(0) = N0 > 0.
(b) Assume r0 > 0. Verify that limt−>∞ N(t) = K, i.e., that all orbits starting from a positive
initial population size converge to the carrying capacity (K is globally stable).
(c) Suppose that we measure population size at discrete time steps, T = 0, 1, 2, ..., with τ time
elapsed between each step (e.g. yearly census, τ =1 year) and let NT = N(Tτ). Show that if the
population grows according to the logistic equation in (1), then the map NT 7→ NT+1 is given by

NT+1 =
λNT

1 + αNT
(2)

and express the new parameters λ, α with r0,K, and τ. The discrete-time model in (2) is known
as the Beverton-Holt-model.

2.2 Aggressive interactions. Suppose that an animal has a constant per capita birth rate b and
a constant natural death rate µ < b. The individuals encounter each other at rate β according
to mass action, and upon encounter, the two animals engage in a fight. When fighting, an in-
dividual gets killed with probability p. Construct a model for the dynamics of this population.
Show that the model can be rewritten in the standard form of the logistic equation, and give the
parameters of the logistic equation, r0 and K, in terms of the original parameters b, µ, β, and p.

2.3 Harvested logistic. Find the optimal harvesting effort in the harvested logistic model,

dN
dt

= r0N(t)
(
1 −

N(t)
K

)
− βEN(t) (3)

i.e., find the value of E such that the harvest per unit of time, βEN, is maximal at equilibrium.
Show that with this optimal harvesting strategy, the equilibrium population density is N̂ = K/2.
Explain verbally why one should keep the population at half the carrying capacity in order to
achieve the maximal harvest.
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2.4 Optimizing fisheries with periodical removal. Suppose a population of fish follows the lo-
gistic equation of population growth, except that after every time period T , we instantaneously
remove H individuals (see figure below). For the management to be sustainable, we require the
number of fish to be the same after each removal. This requirement determines H given the
population size NH where we harvest (see figure).

(a) For a given value of T , determine at which population size NH we should harvest in order to
maximize the number of harvested fish, H.
(b) Show that given the optimal harvesting strategy found in (a), the harvest obtained per unit
of time, H/T , is a decreasing function of T (i.e., the more frequently we harvest, the better).
Explain verbally why this is so (exercise 2.3 may give a hint).

2.5 Fisheries with fixed quota. A fishery might follow the simple rule ”harvest H fish every
day”, with H an arbitrary constant. It is tempting to model this situation with the equation

dN
dt

= r0

(
1 −

N(t)
K

)
N(t) − H

where the last term is the constant removal of H fish/day. (The difference from exercise 2.4 is
that here we model removal as a process continuous in time, so that H is not a number but a
rate; and H is an arbitrary constant, not determined by sustainability as in exercise 2.4.)
(a) N = 0 is not an equilibrium of this model; why? Does the model correctly describe any
biological situation? Amend the model if necessary, while keeping it as close to the above as
possible.
(b) Find the equilibria of the (amended) model and establish their stability. Does this model
exhibit an Allee effect?
(c) Find the critical value of H above which the population cannot be maintained. Compare with
exercise 2.3 (where the removal is H = βEN, E taking its optimal value and N the correspond-
ing equilibrium value). In exercise 2.3, the harvested population is logistic, and therefore its
nontrivial equilibrium, when positive, is stable. Explain the difference from the present model
of a fixed quota.
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