Introduction to Mathematical Biology
Exercises 10.1-10.5

10.1. Migration into a black hole. Consider a population that would grow according to
the logistic model if all individuals stayed in the favourable habitat. Some individuals,
however, migrate to an unfavourable habitat where reproduction is not possible, and
death occurs at rate p. Migration occurs at rate m in both directions. With N; and N,
denoting population size in the favourable and in the unfavourable habitat, respectively,
these assumptions lead to the model
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where 7 and ¢ are the parameters of logistic growth (the carrying capacity is K = 1/c).
Find the conditions under which the extinction equilibrium (N7, No) = (0,0) is unstable.
If these conditions are met, the population is said to be viable.

10.2. Discrete structure in continuous time. A population of frogs consists of tadpoles
(juveniles, density Nj) and adult frogs (N3). Adults produce juveniles at a per capita
birth rate b(Ny) = [bg — c¢No|+ (where [z]y = max(z,0), cf. the birth rate cannot be
negative). The birth rate depends only on the density of the adults themselves because
the juveniles live in a different habitat and therefore use other resources than the adults.
The juveniles die at a constant mortality rate 1 and mature (become adult) at a constant
rate . The adults die at a constant rate us. These assumptions lead to the model
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(a) Calculate Ry in a virgin environment and derive the condition for viability. Hint: use
results from the first set of homework exercises.

(b) Calculate the population vector at equilibrium.

(c) Establish whether the equilibrium is stable.



10.3. Chemostat dynamics. Here we revisit the dynamics of the chemostat already con-
sidered in exercise 4.1 (see details there). Recall that the concentrations of bacteria (x)
and of the nutrient (¢) change in the chemostat according to the differential equations
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where f = F/V, with F' being the inflow of a nutrient solution of concentration ¢, as
well as the outflow of the chemostat content and V' the volume of the chemostat. r is a
strictly increasing function that describes the growth rate of the bacteria as a function of
the nutrient concentration, and k is the number of nutrient particles necessary to make
a new bacterium. Prove that the positive equilibrium of this system, when it exists, is
always a stable node.

10.4. Bacterial growth limited by the accumulation of a toxin. Suppose that a population
of bacteria would grow exponentially at a rate » > 0, but the bacteria produce a toxin
at a per capita rate p, and the toxin kills the bacteria proportionally to its concentration
T leading to a per capita death rate ¢I' . The toxin decays at a constant rate a. The
population density of the bacteria (V) and the concentration of the toxin (7") thus obey
the differential equations
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(a) Show that this model has a single nontrivial equilibrium, which is always stable when
it is positive.

(b) Investigate when the nontrivial equilibrium is a stable node and when it is a stable
focus. Interpret the result biologically: do oscillations occur when the toxin decays fast
or when it decays slowly? Can you explain why?

(c) Suppose now that the production and the decay of the toxin is much faster than the
population growth of the bacteria, i.e., p and « are large compared to r and ¢I'. Show
that in this case, the bacteria follow logistic population growth, and derive the carrying
capacity.

10.5. A genetic switch. Fach cell of a multicellular organism contains the same set of
genes, but not all genes are active in all cells: Cells in different tissues or organs are dif-
ferent because they express different sets of genes. During embryonic development, sets of
genes thus need to be switched on or off. This switching is done by so-called transcription
factors, proteins that bind to DNA and either activate or repress a set of genes. The
question is, of course, what regulates the production of transcription factors and how can



the cell achieve alternative stable equilibria such that it either expresses one set of genes
or another.

In a model of a simple genetic switch, consider two transcription factors U and V. The
two transcription factors belong to two different sets of genes under separate regulating
DNA sequences Ry and Ry, respectively. Both transcription factors can bind to both
regulating sequences, but with different results: When U binds to Ry, the DNA where
U itself is coded, then it activates the set of genes which, among other things, produce
U. When V binds to Ry, then it does not activate and moreover it prevents U binding
(simply takes away the binding place, which is called ” competitive inhibition”). The roles
are reversed for the set of genes that include the gene for V: Ry is activated by binding V/
and not activated by binding U. Only activated genes work and produce the correspond-
ing proteins, including the transcription factors U and V' themselves, at constant rates.
The transcription factors decay at a constant rate. Binding the transcription factors U

and V to Ry and Ry and releasing them happen much faster than the production and
decay of U and V.

(a) Let us first investigate the fast reactions involved in the genetic switch. Binding and
releasing the transcription factors U and V' to and from the regulating sequence Ry hap-
pen according to the chemical reaction
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and, analogously, the same reactions involving the regulating sequence Ry are
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Notice that, for simplicity, we have made the assumption that Ry binds its own ac-
tivating factor V' at the same rate k; at which Ry binds U; and so forth, each pair of
analogous reactions has the same rate for the two regulating sequences. This need not
be so in reality, but nevertheless this simplified model will serve as a useful illustration of
the processes underlying a genetic switch.



Denote the concentrations of U and V respectively by u and v; on the fast time
scale, we consider these concentrations to be constants. Binding and releasing U and V
does in fact change the number of free molecules of U and V, but since U and V are
present in relatively large numbers whereas each cell has only one copy of Ry and one
copy of Ry, the change of u and v from binding or releasing a single molecule is negligible.

Let = denote the probability that (or fraction of time while) Ry binds U and is there-
fore active; and let y denote the probability Ry that binds V. With probability 1 —x —y,
the regulating sequence is free and is available for binding either U or V. Construct
differential equations to describe the dynamics of x and y, and determine their quasi-
equilibrium values for given v and v. Verify that this quasi-equilibrium is stable. Next,
let p and ¢ denote the probabilities that Ry binds U and that it binds V', respectively.
Determine the quasi-equilibrium of p and ¢ as well.

(b) Let us now turn to the slow time scale of the genetic switch. Asseme that Ry and
Ry, when active, produce respectively U and V' at the same constant rate a. Construct
differential equations for the change of v and v using the quasi-equilibria obtained above,
and verify thereby that the slow dynamics can be written in the form

du ou
dat 1+au+ﬁv_uu
dv ov
a 1+ﬁu—|—av—/w

where p is the rate of decay (for simplicity, assumed to be the same for U and V') and ¢,
a and [ are parameters derived from the binding rates and from a. Find all biologically
relevant equilibria of the slow system and establish their stability. Under which condition
does this system have multiple stable equilibria, i.e., when can it function as a genetic
switch?



