INTRODUCTION TO DYNAMICAL SYSTEMS AND CHAOTIC SYSTEMS

EXERCISE 7

P. MURATORE-GINANNESCHI, K. SCHWIEGER

1. A LIÉNARD SYSTEM

For a constant $\mu \in \mathbb{R}$ consider the system $\ddot{x} + \mu(x^2 - 1)\dot{x} + \tanh x = 0$.

- (1) Use a computer to explore the behaviour for different values of μ .
- (2) Prove that the system has a unique stable limit cycle if $\mu > 0$.
- (3) What about $\mu < 0$? What about $\mu = 0$?

2. SIMPLE REGULAR PERTURBATION

Consider the system $\ddot{x} + x = \varepsilon$ for some small constant ε .

- (1) Solve the problem exactly.
- (2) Solve the problem in regular (one time) perturbation theory, i. e., find x_0 , x_1 , and x_2 such that the solution has the form

$$x(t,\varepsilon) = x_0(t) + \varepsilon x_1(t) + \varepsilon^2 x_2(t) + \mathcal{O}(\varepsilon^3).$$

What about secular terms?

3. Kosinus Pendulum

Consider the oscilator (pendulum) given by $\ddot{x} + \sin x = 0$ with a small initial amplitude x(0) = a, initially at rest $\dot{x}(0) = 0$. In this exercise we will compute the frequence of the cycle in two different ways. The first approach is via a conserved quantity:

- (1) Consider the corresponding two-dimensional system in x and $v := \dot{x}$. Find a conserved quantity and sketch the vector field. What type of fixed point is origin?
- (2) Determine the approximate shape for a cycle for a small initial amplitutes a.
- (3) What is the frequence of the cycle?

To practise perturbation theory we also follows a different approach by approximating the solution in a perturbation theory with two time scales (averaged equation).

- (4) What do you choose as parameter for the perturbation?
- (5) Derive perturbative equations with two time scales.
- (6) Determine the frequency of the cycle approximately.

Date: 30th October 2015.

4. METHOD OF AVERAGING

Consider the equation $\dot{x} = -\varepsilon x \sin^2 t$ with a constant $0 \le \varepsilon \ll 1$.

- (1) Solve the equation exactly.
- (2) Now we consider the average

$$\bar{x}(t) := \frac{1}{2\pi} \int_{t-\pi}^{t+\pi} x(\tau) \ d\tau.$$

Show that $x(t) = \bar{x}(t) + \mathcal{O}(\varepsilon)$.

- (3) Find an approximate differential equation satisfyed by \bar{x} .
- (4) Solve it. Compare the obtained solution for the approximation \bar{x} with the exact solution obtained for x.