INTRODUCTION TO DYNAMICAL SYSTEMS AND CHAOTIC SYSTEMS

EXERCISE 6

P. MURATORE-GINANNESCHI, K. SCHWIEGER

1. Epidemic

The following simple model for the evolution of an epidemic was proposed by Kermack and McKendrick in 1972. It consider the number of healthy people x and the number of sick people y subject to the equation

$$\dot{x} = -kxy, \qquad \qquad \dot{y} = kxy - ly$$

with constants k, l > 0.

- (1) Discuss the equation in the group. Try to argue for the terms but also keep in mind that certain effects are not represented in the equation.
- (2) Find and classify all fixed points.
- (3) Sketch the nullclines and the vector field.
- (4) Find a conserved quantity. It may help to find a differential equation of dy/dx and solve it.
- (5) Under what initial condition (x_0, y_0) does y increase initially. (This could be called an *epidemic*.) What happens as $t \to \infty$?

2. Vector Fields of Gradient Systems

Show that the trajectory of a gradient system $\dot{\mathbf{x}} = -\nabla V$ always crosses any equipotential $\{\mathbf{x} \mid V(\mathbf{x}) = \alpha\}$ with $\alpha \in \mathbb{R}$ at a right angle.

Sketch the vector field for the following gradient systems with

(1)
$$V(x,y) = x^2 + y^2$$
, (2) $V(x,y) = x^2 - y^2$, (3) $V(x,y) = e^x \sin y$.

(2)
$$V(x,y) = x^2 - y^2$$
,

$$(3) V(x,y) = e^x \sin y.$$

3. Is it a Gradient System?

Find the gradient for the following system

$$\dot{x} = y^2 + y\cos x, \qquad \qquad \dot{y} = 2xy + \sin x,$$

that is, find a function $V: \mathbb{R}^2 \to \mathbb{R}$ satisfying $\dot{\mathbf{x}} = -\nabla V$. Optional: Why is this system indeed a gradient system?

4. Limit Cycle

Consider the following system

$$\dot{x} = x - y - x(x^2 + 5y^2),$$
 $\dot{y} = x + y - y(x^2 + y^2).$

- (1) The origin is clearly a fixed point. What kind of fixed point?
- (2) Rewrite the system in polar coordinates. Hint: Recall that for the radius r and the angle θ you have $r\dot{r} = x\dot{x} + y\dot{y}$ and $\dot{\theta} = (x\dot{y} - y\dot{x})/r^2$.

Date: 16th October 2015.

- (3) Determine the maximal radius r_0 and the minimal radius R_0 such that no trajectories can leave the corresponding annulus $\{(x,y) \mid r_0^2 \leq x^2 + y^2 < R_0^2\}$.
- (4) Conclude that the system has a limit cycle within the annulus.

5. Approximate Limit Cycle

For a constant $\mu > 0$ consider the equation $\ddot{x} + \mu f(x)\dot{x} + x = 0$ with the **non-smooth** function f given by f(x) = -1 whenever |x| < 1 and f(x) = 1 otherwise.

(1) Show that the system can be equivalently transformed into

$$\dot{x} = \mu(y - F(x)), \qquad \qquad \dot{y} = -x/\mu$$

with the continuous, piecewise linear function

$$F(x) := \begin{cases} x + 2 & , x \le -1, \\ -x & , |x| \le 1, \\ x - 2 & , x \ge 1. \end{cases}$$

- (2) Sketch the nullclines and the vector field.
- (3) Show that the system exhibits relaxation oscillations for $\mu \gg 1$.
- (4) For $\mu \gg 1$ find the limit cycle and estimate its period.