INTRODUCTION TO DYNAMICAL SYSTEMS AND CHAOTIC SYSTEMS

EXERCISE 1

P. MURATORE-GINANNESCHI, K. SCHWIEGER

Before you start

There will be multiple group exercises in this week. So before you start: Find a group or a partner to work with.

1. Warm-Up

How are the equations $\dot{x} = f(x)$ and $\dot{x} = -f(x)$ related. More precisely, how does the phase diagram and how do the solutions relate to each other?

2. Differential Calculus on the Line

- (1) Ask your partner to draw the graph of a function f. Provide him with the figure of the derivatives f' and f''.
- (2) Conversely, provide your partner with the graph of a function f. Ask him to figure functions g with g' = f and h with h'' = f.

3. Stability

Consider the following dynamical systems on the line:

- (1) $\dot{x} = 4x^2 16$, (2) $\dot{x} =$
- (2) $\dot{x} = 1 x^{14}$,
- (3) $\dot{x} = x x^3$,
- (4) $\dot{x} = e^{-x} \cdot \sin x$, (5) $\dot{x} = e^{x} \cos x$.

Work first graphically and then analytically. Find the fixed points. Which of them are stable (unstable)? Sketch the solution for different initial values.

4. Working Backwards

- (1) Ask your partner to draw a phase portrait. Provide a corresponding system equation $\dot{x} = f(x)$ that is consistent with the given phase portrait.
- (2) For a given phase portrait, describe all functions f that lead to the given phase portrait. What kind of manifold is formed by this functions?
- (3) Ask your partner to draw a solutions with different initial values. Provide a corresponding system equation $\dot{x} = f(x)$ that is consistent with the given solutions.
- (4) How do you identify fixed points and their stability from the solutions? In particular, how many fixed points are there?
- (5) Return the favour to your partner and provide him a few solutions for different initial values. But this time make sure there are as many types of stabilities as possible.

Date: 11th Sept. 2015.

5. The Logistic Equation

Consider the logicstic equation

$$\dot{N} = rN(1 - N/K)$$

for constants r, K > 0. Solve this equation analytically. Hint: Look at 1/N.

6. Finite Time

Consider a particle on the half-line $[0, \infty[$ moving according to the equation $\dot{x} = -x^c$ for some constant $c \in \mathbb{R}$.

- (1) Determine all values of c for which the origin is a stable fixed point.
- (2) Assume that c is chosen such that x = 0 is stable. How long it take for the particle to move from x = 1 to x = 0?

7. No Analytic Solution

Consider the equation $\dot{x} = x + e^{-x}$ with the initial condition x(0) = 0.

- (1) Sketch the solution x(t) for $t \geq 0$.
- (2) Find bound for the value x(1), that is, find $a, b \in \mathbb{R}$ with a < x(1) < b.