HARMONIC ANALYSIS AND SQUARE FUNCTIONS: EXERCISE SET 1

You can pass the course by completing the exercises and returning your written solutions. A coherent solution grants 2 points. If there are some mistakes you can still get 1 point. The grades will be assigned as follows:

80% of total points = 5; 73% of total points = 4; 66% of total points = 3; 59% of total points = 2; 50% of total points = 1.

Return your written solutions preferably directly to Emil Vuorinen (office C435, emil.vuorinen@helsinki.fi). You can also return them during the lectures. **Deadline for the first set is Friday, November** 6.

In these exercises we work in \mathbb{R}^n , $m \in (0, n]$, (s_t) is an m-LP-family and θ_t , V etc. are like in the lecture notes.

(1) Suppose μ is a measure which is either finite or of order m. Show that for $f \in \bigcup_{p \in [1,\infty]} L^p(\mu)$ and $x \in \mathbb{R}^n$ the integral

$$\theta_t^{\mu} f(x) = \int s_t(x, y) f(y) d\mu(y)$$

is absolutely convergent.

- (2) Suppose μ is of order m. Show that $|\theta_t^{\mu}f(x)| \leq CM_{\mu}f(x)$ for every t > 0 and $x \in \mathbb{R}^n$, uniformly in t. Conclude that $\|\theta_t^{\mu}\|_{L^2(\mu) \to L^2(\mu)}$ is bounded uniformly in t > 0. Conclude also that one can for every $i \in \mathbb{N}$ define an m-LP-family $(s_{t,i})_{t>0}$ with kernel constants bounded by those of $(s_t)_{t>0}$, and the related square functions $V_{\mu,i}$ so that $\|V_{\mu,i}\|_{L^2(\mu) \to L^2(\mu)} \leq C(i) < \infty$, $V_{\mu,i}f \leq V_{\mu,i+1}f \leq V_{\mu}f$, $V_{\mu}f(x) = \lim_{i \to \infty} V_{\mu,i}f(x)$ and $\|V_{\mu}f\|_{L^2(\mu)} = \lim_{i \to \infty} \|V_{\mu,i}f\|_{L^2(\mu)}$.
- (3) Let $M(\mathbb{R}^n)$ denote the vector-space of all complex measures ν defined in $\operatorname{Bor}(\mathbb{R}^n)$. Show that $M(\mathbb{R}^n)$ is a Banach space when equipped with the norm $\|\nu\| := |\nu|(\mathbb{R}^n)$.
- (4) Let μ be a measure of order m and $\beta > \alpha^m$. Show that for every $x \in \operatorname{spt} \mu$ and c > 0 there exist some (α, β) -doubling cube Q centred at x with $\ell(Q) \geq c$.
- (5) Let μ be a measure of order m. Define the conical square function

$$S_{\mu}f(x) = \left(\iint_{\Gamma(x)} |\theta_t^{\mu} f(y)|^2 \frac{d\mu(y) dt}{t^{m+1}} \right)^{1/2},$$

where $\Gamma(x)$ denotes the cone

$$\Gamma(x) = \{(y, t) \in \mathbb{R}^{n+1}_+ \colon |x - y| < t\}.$$

Find an m –LP-family $(\tilde{s}_t)_{t>0}$ so that the related vertical square function \tilde{V}_μ satisfies

$$||S_{\mu}f||_{L^{2}(\mu)} = ||\tilde{V}_{\mu}f||_{L^{2}(\mu)}.$$

(6) Let μ be a measure of order m and consider the conical square function S_{μ} from above. Let us consider an arbitrary fixed ball B centred at c_B . Prove that we have for every $x \in B$ the uniform pointwise bound

$$|S_{\mu}(1_{\mathbb{R}^n\setminus 10B})(x) - S_{\mu}(1_{\mathbb{R}^n\setminus 10B})(c_B)| \le C,$$

where $C < \infty$ is independent of x and B.

Prove that the same holds with S_{μ} replaced by V_{μ} if one assumes that $(s_t)_{t>0}$ is an x-continuous m-LP-family.