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ABSTRACT. In these lecture notes we study non-homogeneous analysis in R".
This means that we do harmonic analysis with rather general Borel measures .
Usually we assume that our measure y is of order m i.e. p(B(z,r)) < Cr™ for
some m € (0,n]. No control from below, or doubling properties, are assumed.
We study the boundedness properties of vertical square functions and prove var-
ious different T'b theorems.

These lecture notes are mainly based on the article [1] by Martikainen, Mour-
goglou and Vuorinen, and the book [4] by X. Tolsa.
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1. SQUARE FUNCTIONS

We work in R" using m-dimensional objects, where m € (0, n| does not need to
be an integer.

H.M. is supported by the Academy of Finland through the grant Multiparameter dyadic har-
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Littlewood-Paley family of kernels. We say that a family of functions
si: R" xR" = C, t >0,

is an m-dimensional Littlewood-Paley family (m-LP-family), if for some o > 0
and C < oo we have the size condition

tOé
(t + [z —y[)me

(1.1) |se(z,y)| < C
and the y-Holder condition

ly — 2|
1.2 — <C
( ) ‘St<xay) St(xa Z)| — (t + ’I‘ . y’)m+a

whenever |y — z| < t/2.
We say that (s;):~0 is an z-continuous m-LP—family if, in addition, we have the
x-Holder condition

|z — 2|
(t + [z —y[)mte

(13) |3t<x7y) - St(zay)| < C

whenever |z — z| < t/2.

Measures of order m. We say that a Borel measure x in R" is of order m if for
some C, < oo we have

w(B(z,r)) < C,r™, zeR" r>0.

We do not assume any control from below (in the much easier ADR situation one
would also have p(B(z,7)) > ¢,7™). Also, we do not assume any doubling (i.e.
pw(B(x,2r)) < Cu(B(z,r)) property of the measure.

Integral operators 0; and the vertical square function V. Let us be given an
m~-LP-family (s;);~o and a measure p which is either finite or of order m. For
f € Upepi oo LP(1) and z € R™ we set

0 f(x) = / se(z,4) £ () duly).

This is an absolutely convergent integral (exercise). Our main object of study is
the vertical square function operator

Vit = ([ wrs@r )"
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Why square functions? One of the main application areas is the theory of partial
differential equations. A prototypical example of an n-LP—family of convolution
form is

0
si(x —y) = tapt(ﬁ - ),

where
2t

pt(l‘) = an(tQ + |I|2)(n+1)/2

is the classical Poisson kernel for the Laplacian in the upper half-space R"*! =
{(z,t) : z € R", t > 0}, with 0,, denoting the volume of the unit n-sphere in R"**.
Let m,, denote the Lebesgue measure in R". Then

07" f = sex f

and the corresponding square function plays an important role in the theory of
harmonic functions in R/,

An important example of non-convolution kernels arises in the theory of diver-
gence form elliptic operators. Generalising what was done above we can define
s to be the Poisson kernel p} associated to some second order divergence opera-
tor L. Under appropriate assumptions also such kernels are of Littlewood—Paley
type by the De Giorgi/Nash regularity theory

In these lecture notes we are interested in the L? (or L”) boundedness of square
functions. In the Lebesgue measure case the convolution kernel situation is clas-
sical. It reduces to Fourier transform considerations and using Planceherel iden-
tity. We are interested in situations where such easy solutions do not exist. This
will lead us to the so called Tb theorems, which characterise the L? boundedness
for general LP-families which need not be of convolution form. Another signifi-
cant difficulty is that we will consider quite irregular measures 1 (this is so called
non-homogeneous theory since our measure is not doubling).

Before getting to the various 7'b theorems for square functions we will spend
some time on general non-homogeneous analysis and other boundedness criteria
for square functions.

2. PRELIMINARIES FROM NON-HOMOGENEOUS ANALYSIS

We denote by C' a general big constant, which can change from line to line. If
we write (', C; etc. we refer to specific fixed constants. If we want to highlight
the dependence on some parameter, say o, we may write C,.

2.1. Complex measures. A complex measure v is a complex-valued and count-
ably additive function (i.e. v(|JA;) = >, v(4;) for disjoint measurable A;) de-
fined in some o-algebra. To every such measure we associate its variation mea-
sure

V1(4) = sup 3 (4,
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where the supremum is taken over all the measurable sequences of disjoint sets
(A;) satisfying A = |J A;. This is a finite positive measure. There also exists a
measurable function 4 so that |h(z)| = 1 for all z € R", and
dv = hd|v| ie v(A) = / hd|v|.
A

Moreover, if 1 is a measure, f € L'(u) and we define

v=fdu
then
v = [f] dp.
We define the total variation
[v]| = [v[(R™).

Let M(R") denote the vector-space of all complex Borel measures in R™. This
becomes a Banach space when equipped with the norm | - ||. In the exercises we
will consider some details. For more details about complex measures you can
also consult Chapter 6 of Rudin’s book [3].

It is convenient to extend the above definition of vertical square functions as
follows. Given an LP-family (s;);~o define

Ov(x) = /st(m,y) dv(y), ve M®R"Y), xeR",

and
o di\1/2
Vi(z) = (/ pr@PF) v e MR, s R
0

Given a measure p we say that V maps M (R") — L"*°(y) if for some C' < co we
have

p{x: Vv(z) > A}) < C@
for every v € M(R™) and A > 0.

2.2. Maximal functions. Let i be an arbitrary Radon (i.e. locally finite Borel)
measure in R".

2.1. Remark. Our definition of a Radon measure p is that ;1 is a positive Borel
measure in R" such that u(K) < oo for every compact set K. It is then a non-
trivial fact that ¢ automatically enjoys other regularity properties (see Theorem
2.18 in [3]):

u(E) =sup{u(K): K C B, K compact} = inf{u(V): E CV, V open}

for every Borel set . We could take this as the definition of a Radon measure,
but it is, like said, automatic from the local finiteness.
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We define the centred maximal function M, acting on a complex measure v by

o BT
M) =30 (Bl )

For f € Ll (1) we set M, f := M,(fdu) i.e.

loc
1

2.2. Proposition. Let i« be a Radon measure in R". The centred maximal operator M,
maps LP(p) — LP(u) for 1 < p < oo and M(R™) — L*°(p).

Proof. The case p = oo is trivial. The LP(p), 1 < p < oo, boundedness then fol-
lows from the Marcinkiewicz interpolation theorem if one shows the L'(u) —
L**°(u) boundedness. But this follows from the more general statement that
M,: M(R") — L'*°(u) boundedly. This is what we will prove now.
Fix v € M(R") and A > 0. We need to show that that

p({as Myia) > 2p) < 12
for some C < co. Given R > 0 define

Qr ={z € B(0,R)Nsptu: M,v(z) > A}).

The localisation to a ball is made just to make this set bounded, since the covering
theorem by Besicovitch requires this.
For each = € Qp let B, be a ball centred at = such that

v|(Bz)
N(Bx)

By the Besicovitch covering theorem we can choose a subfamily {B;}; C { B, }.zcq,
such that

> A

QRCUBi and Zle < C,,

where (), < oo is some dimensional constant. We get

q}

p(m) < Y (B < 1 Y (B < CnHT

This is a uniform bound in R so the claim follows by letting R — oo. 0

Let M2 be the centred maximal function, where we take supremum over cubes
Q(z,r) centred at x instead of balls B(x,r). The above theorem holds also for M2,
since the Besicovitch covering theorem holds also for cubes.

An important difficulty in the non-homogeneous analysis is that the non-centred
maximal function

nc _ 1 .
M, f(a:)—sup{—u(m/Bmdu. Bclosedball,a:EB}
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may fail to be of weak type (1,1). One needs to use the centred maximal function
M,, or some other variant. Sometimes useful is the following variant

— 1
M, f(x) := sup {,u(SB)

which satisfies the same boundedness properties as M,,. This is easy to see using
the standard 5r-covering theorem.

/ f|du: B closed ball, z € B},
B

2.3. Local dyadic grids. Let )y C R" be a half-open cube in R" i.e.
Qo =[x, 21+ 0) X -+ X [y, 2, + 0).

We let Dy(Qo) = {Qo}. A dyadic child of @)y is any of the 2" cubes obtained by
partitioning )y by n median hyperplanes (these are the hyperplanes parallel to
the faces of )y and dividing each edge into 2 equal parts). The collection of the
dyadic children of @y is denoted ch(Q,). We also define D;(Qy) = ch(Qy). In
general, given k > 0 we define inductively

Di(Qo) = U ch(Q).

QED,-1(Qo)
For each £ > 0 we have that
QO = U Q?
Q€Dy(Qo)
where the union is disjoint. We define the local dyadic grid D((Q),) by setting

D(Qo) = | DPe(Qu)-

If Q € Dr(Qp) we call @ a dyadic subcube of () of generation %, and denote its
side length by £(Q) = 27%¢(Qq).

2.4. The dyadic maximal function. Given a half-open cube (), and a Radon
measure ;. we define the (local) dyadic maximal function
v[(Q)

Mpgyuv(x) = sup 1lg(x) ,
Qo) QeD(Qo) M(Q)

and as usual denote Mpg),.f = Mpo),u(f dit).

2.3. Proposition. Let ;1 be a Radon measure in R". Given any half-open cube (), the
dyadic maximal operator Mp(q,),, maps LP(u) — LP(u) for 1 < p < oo and M (R™) —

LY ().

Proof. As usual, it suffices to prove the boundedness M (R™) — L'*°(u). So fix
v € M(R") and A > 0. Choose maximal @ € D(Qy) so that

vI(Q)
Q)

> )\,
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and denote their collection by F(Q)y). We have
{z: Mpqy)uv(z) > A} = U Q,
QeF(Qo)
where the union is disjoint by maximality. Therefore, we have that

pl{a: Mgy > )= 3 w@ <t 3 pi@ <2l

QEF(Qo) QeF(Qo)

This ends the proof (notice that the above weak type bound does not even depend
on n). O

2.5. Doubling cubes. A cube @ C R? is said u-(«, 8)-doubling (or just («, 3)-
doubling if the measure y is clear from the context) if

(eQ) < Bu(Q),

where a() is the cube concentric with @) with diameter o diam(Q)). We record the
following result:

2.4. Lemma. Let pu be a measure of order m and 3 > o™. For every x € sptpuand c > 0
there exist some («, B)-doubling cube Q) centred at x with ((Q) > c.

Proof. Exercise. 0

2.5. Lemma. Let i be a Radon measure in R" and 3 > o™. Then for py-a.e. x € R™ there
exists a sequence of («, B)-doubling cubes (Qy)x centred at x with ((Qy) — 0 when
k — oo.

Proof. For j > 0 define
F; = {x: there is no («, §)-doubling cubes Q centred at  with £(Q) < 277}.

It suffices to fix j and prove p(F};) = 0. For this it suffices to fix an arbitrary cube
Qo with £(Qo) = 277 and show that u(F; N Qo) = 0. Fix now an integer k& > 1.
For each y € F; N Q, let Q, be some cube centred at y with side length o "¢(Q,).
Notice that the cubes a*(), are not («, 3)-doubling forall s = 0, ...,k — 1 and that
a*Q, C 2Qo. This implies that

(2:6) (@) < 87 (aQy) < -+ < B (0" Qy) < BN p(2Q).
Using Besicovitch covering theorem we choose y,,, € Q) N Fj so that
(2.7) QNFclJQ, and D 1, <C.

Let N = #{ym }. We will show N < oo and derive a useful quantitative estimate.
Let |A| denote the Lebesgue measure of a set A C R". Notice that

N

N(@*0(Q0)" = 1Qy,.| < Cul2Qo| = 2"Cl(Q0)"

m=1
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so that
N < 2"C,aM.
Using (2.6) and (2.7) we derive
N N
p(Qo N Fy) < D7 @) < N5™H1(2Q0) < 2'C(5) 1(2Q0) 0,
m=1
when k£ — oo (since 5 > a"). Therefore p(Qo N F;) = 0 and we are done. O

2.6. Cubes with small boundaries. Given ¢t > 0 we say that a cube ) C R" has
t-small boundary with respect to the measure 1 if

p({z € 2Q: dist(z,0Q) < M(Q)}) < tAu(2Q)
for every A > 0.

2.8. Lemma. Let y be a Radon measure in R™. Let t > 0 be some constant big enough
(depending only on n). Then, given a cube ) C R™, there exists a concentric cube Q)' so
that Q C Q' C 1.1Q) which has t-small boundary with respect to fu.

Proof. We may assume for simplicity that cg = 0 (where ¢ is the centre of Q).
Given a € R define the hyperplanes

Hi(a) ={z € R": z; = a}, j=1,...,n,
and the e-neighbourhoods
Hj (a) ={z e R": dist(x, H;(a)) < €}, e>0.

Define the measure ¢ = p|2@Q so that ||o]] = p(2Q). It is enough to find a €
[0(Q),1.05¢(Q)] so that forall j =1,...,nand A > 0 we have

o(Hjzx@ (@) _ ol o(Hjn(=a)) _ ol
2.9 = <t and = <t :
= @ Sl o Sl
The existence of a is shown as follows. Define the projections 7;(z) = x; and
7j(x) = —x;. We define the image measures v; = (7;)40 and 7; = (7;)x0 (here

e.g. v;(A) = o(r;'A) for A C R). Notice that H; (a) = 7; 'I(a,€), where I(a,€) =
la — €,a + €]. Therefore, we have that v;(I(a, M(Q))) = o(m; ' 1(a, M(Q))) =
o(H;eq)(a)). This means that (2.9) is equivalent to

5@ Q) _ o] (1@ 0Q)) _ , o]
©M(Q) < tﬂ(Q) and 0 < tf(@)
This follows if
Mvj(a) < t% and Mi;(a) < t2!<(7c|g‘)’

where M is the centred maximal function defined using the Lebesgue measure in
R.
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Define the measure v = » " (v; +7;). Since |[v|| = [|7]| = [|o|| for all j, we have
||| = 2n]|o]|. Therefore, it suffices that
S vl
20Q) ~ 4nl(Q)
Since M is bounded from M (R) — L'*°(m;) we have for some C' < oo that

m1<{a eR: Mv(a) > tM}) < 4n€( ) 40” Q)

Q) o 1M1= 1@ = 350

for all ¢ large enough. We conclude that for all large enough t there must exist
a € [(Q),1.05¢(Q)] so that

This completes the proof. O

3. CALDERON-ZYGMUND DECOMPOSITION AND WEAK (1, 1) BOUNDEDNESS
OF SQUARE FUNCTIONS

3.1. Proposition (Non-homogeneous Calderén-Zygmund decomposition). Let j
be a Radon measure in R". For every v € M (R™) with compact support and every
A > 20w /|| |, we have:

(1) There exists a family of cubes (Q;); so that >, 1o, < C, and a function f €
L () such that

A
(3.2) v|(Q:) > 2n+1u(2Qz~),

A
(3.3) VI(nQs) < G n(20@Qi) for > 2,
(3.4) v=fdpinR"\ | JQi, with |f| < Ap-ace.

(2) Suppose that for each i we are given a (6, By)-p-doubling cube R; such that it is
concentric with Q); and Q); C R;. For each i set
Lo
Zk 1Qk
Then there exists a family of functions (y;) (of the form ¢, = «;h; for some
constant o; € C and non-negative function h; > 0) such that

w; =

(3.5 spty; C R;,
(3.6) [ eu= [ wiav
(3.7) Z lpi| < BA (B depends only on (3, n),

(3.8) 1@ill ooy (Ri) < 2[v[(Qs)-
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Proof. Fixv € M(R™) and A > 2" ||v||/|| ]l
(1): Let
H = {x € sptv: there exists cube () centred at z so that |v|(Q) > %,u@@)}.

For xz € H let
{(x) = sup {6(@) : () is a cube centred at x so that |v|(Q) >

Qnil 1(2Q) }

Let A > 1be so that A > A2""!|v||/||u||. Given z there exists C, < oo so that for
all cubes @) centred at x for which ¢(Q) > C, we have

1(2Q) > 1
722 I—
This means that for all such ) we have
Al A
Q) < Wl < sy lll € 5o7m(2Q).

This proves that for + € H we have 0 < {(z) < C, < oo. For every x € H let Q),
be some cube centred at x so that ¢(Q,) > ¢(z)/2 and

A
Y(Q2) > 5o n(2Qy)

Then for every cube () centred at x for which ¢(Q) > 2¢(Q),) we have ¢(Q) > {(x)
and so

V(@) < ganl2Q)

Notice that H is a bounded set, since sptv is compact. Therefore, we can use
Besicovitch covering theorem to choose {Q;}; C {Q.}cn so that

HC UQZ' and Z lg, < C,.

The cubes Q); satisfy (3.2) and (3.3) by construction.

Next, we will prove (3.4). Let F' consist of those y € spt v for which there does
not exist a sequence of (2, 2"!)-|v|-doubling cubes centred at y with side length
tending to 0. By Lemma 2.5 we have |v|(F) = 0. Suppose = € sptv \ (H U F)).
Then choose a sequence P of (2,2"™)-|v|-doubling cubes centred at x so that
((P;) — 0 when k — oc. Since x ¢ H we have

V(P < Son(2Py)
and so
VI(2P) < 27| (Py) < An(2F%).
This yields

Q) ot
hgl_}glf Q) <, esptv\ (HUF).



HARMONIC ANALYSIS AND SQUARE FUNCTIONS 11

This implies that for every A C (HUF)¢we have |v|(A) < Au(A). Since [v|(F) =0,
we have that |v|| H® < u.

The Radon-Nikodym theorem guarantees the existence of g € L' (), g > 0, so
that |v|| H® = gdpu. Let us see that g(z) < A for u-a.e. z. Notice first that g(z) =0
for p-a.e. v € HUF,since 0 = [v||H(HU F) = [, 9 dp. Define

Ay ={z € (HUF): g(x) > A +1/j)

and notice that

A+l A) < [ gdn=1ol(A) < wn4)
implying that 1(A;) = 0. It follows that g(z) < X for p-a.e. z.

Let us then write dv = hd|v| for a function h satisfying |h| = 1. Now v|H® =
hgdp =: fdp, and |f| = |hg| = g < A p-a.e. Since H C |J, Q; this completes the
proof of (3.4).

(2): Suppose R; and w; are like in the assumptions. Let us first assume that
the family ((Q);); is finite. Then we may assume it is enumerated so that /(R;;) >
((R;) for all i. The functions ¢; will be now inductively constructed, and they will
have the form ¢; = a;14, for some «; € C and A; C R;.

We begin by setting A; = Ry and ¢; = a;1p,, where «; is chosen so that

1
dv = duie. ay = ——— dv.
/lwl 14 /ng M1.e. o M(Rl)\/Qlwl 14

v|(Q1)
1(Ry)

Notice that

1] < laa| <

which readily yields
@1l oo up(Rr) < [v|(Q1).

Moreover, since

A A
(@) < M63Q1) < sgn(6@2) < son(6R) < (R )

so that
|(,01‘ S Cl)\

We are done with the initial step of the induction. Suppose then that ¢y, ..., @51
have been constructed so that they are of the form ¢, = o;14,, A; C R;, satisfy
(3.6), (3.8) and

k-1
Z lpil < BA
i1

for some B which will be fixed below.
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Let R, ..., R,, be the subfamily of R;,..., R;_; such that R,, N R, # 0. As
((Rs;) < U(Ry) we have R,, C 3R;,. We know fori =1,...,k — 1 that

[redan=| [ o] =| [ war| < i@y

Using this we get

S [tenldn < i)
/ Yto,dy]

kg
C n
< Culv|(3Rx) < oy An(6Ry) < 50

TA(RE) =1 Colpu(Ry).

Therefore, we see that

Z|€0SJ|>202 < Z ool dp < & )
(! <%

We now set

Ay = ka{Zy%Kz@ }

J

so that u(Ax) > u(Ry)/2.
We choose the constant oy, so that

1
Y dp = / w dv i.e. oy = / wy, dv.

V(@)
’Oék’ =2 M(Rk)

We have

<201

This gives that
el + Y los| <201+ C)A in Ay

J
Letting B = 2(C; + () yields (3.7) by induction.
That (3.8) holds is easy:

el e) < 2lenli(4e) = 2| [ wedv] < 2@
k

We are done with the proof in the case that (();); is finite.

The general case (where (Q);); is not necessarily finite) follows from this by
rather standard convergence arguments (but it does require some knowledge of
topology). O
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3.9. Example. The previous Proposition is used as follows. Let i be a measure
of order m in R", v € M(R™) with compact support and A > 2"*!|v||/||u||. Let
the cubes (Q;); and the function f € L'(u) be like in (1) of Proposition 3. For
each i let R; be the smallest (6,6™!)-u-doubling cube of the form 6*Q;, k > 0
(the existence of such a cube follows from the simple arguments used to prove
Lemma 2.4). Then let w; and ¢; be like in (2) of Proposition 3.

We begin by writing

- ol(E1Ue) +1(Uo)
:fdu%—z:zwidy |
= fdu+i%du+2(widv— i dy)
=:9du+ZZﬁi, |
where the function g is defined b;
g="r+2 ¢

and the complex measure f3; is defined by
Bi = w; dv — p; dp.

We now go through the important properties of this Calderén-Zygmund decom-
position of v with respect to the non-homogeneous measure /.

The property of fundamental importance is the the following measure esti-
mate:

n+1 n+10n C
610 p(U2@) = S uee) < 53 @)l = T vl = Skl

We continue with the properties of the good function g. It holds that
lgllzoe gy < (14 B)A

and

ol < [101dn+ Y [edu=pl(RAUQ) + 3 [ oidn
<+ 30| [ wia]

< vl + Z W (@i) < (1+ Co)lvl].
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Combining these bounds we get the following important L*(;) bound
(3.11) 19112 < llgllz=llgllzrgn < CAlIv]

Regarding the complex measures 3; we have the following:

(a) SPt 62 C R,
(b) Bz z f W; dv — f @i d/l - O/

©
I8 < [ fuldv+ [ lgildu= [ fuddv+ | [ocan] < 2pi@)

The pomt that R; is the smallest (6,6™!)-u-doubling cube of the form 6Q);,
k > 0, is utilised as follows. It 1mpl1es that

(3.12) /R @) o

i\Qi ‘I — CQ; "o

This is an exercise.

Using the Calderén-Zygmund decomposition from the previous example we
now show the following important result.

3.13. Theorem (Weak (1, 1) boundedness of square functions). Let ; be a measure
of order m in R", (s;)¢~0 be an m-LP-family, and V' be the corresponding vertical square
function. Suppose that V,,: L*(u) — L*(p) boundedly. Then V: M(R™) — L%%°(u)
boundedly.

Proof. We need to show that for some C' < oo we have for every v € M(R") and
A > 0 that

p{z: Vi(z) > A}) < C’@.

Let us first assume that v has compact support. If A < 2"||v||/| u|| we have the
trivial estimate

(s Vole) > A)) <l < 220

So we may suppose that A > 2"*1||v||/||1||- Then we are in the position to perform
the Calderén-Zygmund decomposition of v with respect to x like in Example
(3.9):

V:gdﬂ+26i

with all the properties (and Q);, R;, w;, ; etc) exactly like above.
Using the subadditivity of V' we see that

Vi(z) < Vogla +ZV@

Therefore, it suffices to bound the terms

p({z: Vog(z) > A/2})  and u({a:: > Vi) >>\/2}>
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Using that V,,: L?*(u) — L?(u) boundedly and (3.11) we see that

4
n{z: Vag(e) > A/2}) < 5l1Vagllzag
_ 4Vl
< 2
Because of (3.10) it only remains to prove that

B ]
gl < ACHIVilFauy 2o

v||

M({x € R"™\ UQQj: ZVBZ-(x) > )\/2}> < CHT
We bound ’
N<{x € R”\UQQj: ZVBi(x) > >\/2}> < ;/Rn\uz@ SV du

i

)

=3 Vi du
A Z U, 20,
)
A Z R™\2Q;

Let us fix i for the moment. We will prove that
[ vedus e
R™\2Q;
This will end the proof, since
D wl(@Qi) < Cullv]l.
Let us write

/ Vﬁidﬂ_/ Vﬁidwr/ VBidu=1+1I1I.
R™\2Q; R7\4R; 4R;\2Q;

We estimate
I]S/ V,,widu—l—/ Vipidp = 11, + 11,
4R;\2Q; 4R;
Using the L*(11) boundedness of V,, we see that
1/2
11, < p(ak) / Vil dn)
(m+1)/2 1/2 5 \ /2
< 6Vl (RYP( [ Tl dn)

< 62NV p2 22 |0ill Lo (o (R
< 26" VRV, L2120 V1(Q1),
where the last inequality used (3.8).
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Let us then estimate /],. It is an exercise to show that for every x € R" \ 20Q);
we have

‘x_ch "

1, < opl@) |
4R; \Ql
But notice that

/ dp(z) / dp(x) / dp()

It is recorded in (3.12) that the second term is bounded by C5. The first term is
clearly bounded by a constant, since p(4R;) < CU(R)™ and |z — co,|" = |z —
cr,|™ > cl(R)™ for x ¢ R;. This yields that

I1, < Clv|(Qy).
Combining what was done above we have shown that
11 < Cly|(Qy).

This gives that
dp(x)
T =™

It remains to show
I = / VB du < Cv|(Q)).
R”\4Ri
For all x € R™\ 4R; we will show that

<| (R ((R)* i)

z —cp ™t |w = cp [t

(3.14) VBi(z) < C
This is enough, since

d
/ M—(ZE)JFSCJ’E, xo €R"r>0,e>0.
R™\ B(z0,r) |.I‘ - x0|m ¢

So we fix x € R™\ (4R;), and estimate

VBi(x) < (/Ozdiam(Ri) 16,3 (x)” %) v

|z—ck, | diN 1/2
([ ps@rd)
2diam(R;)

& dt\ 1/2
+ (/ 10,8:(2)|? 7) = A + Ay + As.
\

T—CR; |

In A3 we use all of the properties of 3; listed in Example 3.9. First, since spt 3; C
R; and f3;(R;) = 0 we may estimate

10:8i(x |—‘/ si(,y) t(r, cr,)] dBi(y /’Stxy si(, cr,)

| (y)-
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Recall that in A3 we have t > |z — cg,| > 2diam(R;) (since = ¢ 4R;). Therefore,
we have for y € R; that

ly — cg,| < diam(R;) < t/2.

Using (1.2) we then get

((R;)"
tm+o¢

|9tﬂz($)‘ <C

1Bl

Recalling from Example 3.9 that ||5;]] < 2|v|(Q;) we now get

C(R;)

1/2
t*27ﬂ720&71 dt) S C
|ZE — g, |m+a

Ay < cwluury( [

‘x_cRil

v[(Qs).

In A, we use again the y-Holder-continuity argument from above. This time
we estimate

(R LR

— I <
|5t('x>y) St(x7CR7,) _C‘x—CRi m+ta — |$_CR,- m-+ta
yielding
/¢ Rz a/Qta/2
5] < CEE T Q)

From this we get

Nk o= / ((R;)/2
ae <o B py([T T et <o i,

|{L‘ — CR; |m+a N |{L‘ — CR; |m+a/2

Finally, we estimate A;. Here we use (1.1) to the effect that

d|Bil(y) t*
0:0; < Ct* — < i)
patol < ce [ AR <o)
Using this we see
1 2diam(Ri) 1/2 g(R)Oc
AA<(C—— i 2ol <C : i)
e[ ) < o S @)

Combining the bounds for 4;, ¢ = 1,2, 3, we have proved (3.14). This completes
the proof in the case that v has compact support.

Let us now prove the result in full generality. So assume v € M(R") (not
necessarily of compact support) and A > 0. Assume first that ¢ has compact
support, and choose N, so that spt u C B(0, Ny). Define the compactly supported
measure vy = v|B(0,N), N > Ny. Using (1.1) we have for every z € sptu C
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B(0, Ny) that
V@—wmh4£MMMW—wmw%ﬁﬁ(f”ww_wmw%VQ

N—-Np
C N—Nyp 1/2 oo 1/2
S . AT |J|\lf:>|>|m+a(/o ) +cuu\|(/N )
—4VO0
Cllvll A
S g | B
SIN=N)m T 2

fixing N large enough. So if x € spt p is such that Vi (x) > A then Vvy(z) > A/2.
Therefore, we have

p{Vv > 2} < p({Vw > A/2}) < 0@ < c@

using the fact that vy has compact support.

Disposing of the assumption that ; has compact support is trivial. Define
pn = p|B(0,N), N > 0. This is a compactly supported measure of order m
(uniformly in N). Since V,, is bounded in L*(u:), we see that V,,, is bounded in
L*(py) uniformly in N. But then we can conclude that

(v > ap < o2
uniformly in N. Letting N — oo gives the claim. We have proved the result in
tull generality. O

4. THE NON-HOMOGENEOUS GOOD LAMBDA METHOD

4.1. Theorem (The non-homogeneous good lambda method). Let p be a measure
of order m in R", (s;)~0 be an x-continuous m-LP-family, and V' be the corresponding
vertical square function. Let 3 > 0 and Cy > 0 be big enough numbers, depending only
on the dimension n, and assume 6 € (0,1). Suppose for each (2, 5)-doubling cube @
with Cy-small boundary there exists a subset Gg C Q) such that u(Gg) > 0u(Q) and
Vi M(R™) — LY (u|Gg) is bounded with a uniform constant independent of Q). Then
V), is bounded in LP () for all 1 < p < oo with a constant depending on p and on the
preceding constants.

4.2. Remark. One can also assume that V¢, : L*(1|Gq) = L*(1|Gg) with norm
bounded uniformly on @, since then V is bounded from M (R") to L*°(u|Gg) by
Theorem 3.13. This will be important for us later.

To prove Theorem 4.1 we will use a Whitney’s decomposition of some open set.
In the next lemma we show the precise version of the required decomposition.

4.3. Lemma. If Q2 C R™ is open, Q2 # R", then () can be decomposed as

o=,

el
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where ();, i € 1, are closed dyadic cubes with disjoint interiors such that for some con-
stants R > 20 and Dy > 1 depending only on n the following holds:
(i) 10Q; C Q foreachi € 1.
(ii) RQ; NQ° # O foreach i € 1.
(iii) For each cube ();, there are at most Dy cubes (); such that 10Q; N 10Q); # .
Further, for such cubes Q);, (), we have ((Q;) =~ £(Q;).

Moreover, if i is a positive Radon measure on R™ and 1(2) < oo, there is a family of
cubes {Q;};es, with S C I, s0 that Q; C Q; C 1.1Q;, satisfying the following:

(a) Each cube Qj, j € 8,is (9,2Dy)-doubling and has C\-small boundary.

(b) The cubes Q);, j € S, are pairwise disjoint.
(©)

(4.4) ( U QJ) > 8;)0 p(Q).

jES

Proof. A Whitney decomposition using dyadic cubes satisfying (i), (ii) and (iii) is
easy. To this end, let D, be the collection of standard dyadic cubes in R™ i.e.

- U Dy, DE = {275([0,1)" +m): m € Z"}.

k€EZ

The main properties of dyadic cubes are that each D is a partition (a pairwise dis-
joint cover) of R” and each D™ is a refinement of the previous D} (cubes from D¥
can be written as the disjoint union of their 2" dyadic children from Dg*'). More-
over, maximal dyadic cubes with respect to some property are always disjoint.
Now, choose maximal dyadic cubes () € D, so that

10Q C Q.

It is almost immediate that the cubes @) can be taken to be the cubes Q;, i € I.
Details are left as an exercise. B
To prove the existence of the family {Q;};cs, we denote by I C I the subfam-
ily of the indices such that the cubes from {Q); }ic1,, are (10,2D,)-doubling. Then
notice that
1

nQ) < 55

(1()@]) lfj el \ Iy,

Since
Z Liog, < Dolg,

jel
we deduce that

1
> Z (10Q;) < 5p(Q).

J€NIap =



20 HENRI MARTIKAINEN

Thus,
1
@5) W(Ue)zu- ¥ w@) = ju).
J€lap JENIap
Choose a finite subset I}, C Iy, so that
W(Ue)=u(Ua)
J€Lap JEIL,

Since [}, is finite there are no problems with using the 5r-covering theorem: there

exists S C I}, so that
U @ic U 20 c 10
JEIy, jerk, jes
and so that the cubes 20);, 7 € S, are pairwise disjoint. For each j € S, we con-
sider a cube @); with C';-small boundary so that Q; C Q; C 1.1Q);. The existence

of these cubes is guaranteed by Lemma 2.8. It is clear that the cubes Q;, j € S,
are pairwise disjoint since the cubes 20);, j € S, are pairwise disjoint.
Next, notice that

1(9Q;) < u(10Q;) < 2Do u(Q;) < 2Do u(Q;),

since S C Ij. Therefore, each cube @j, j € 5,1s (9,2Dy)-doubling and has C;-
small boundary. It remains to prove the measure estimate (c):

() §2u< U Qj> §4u( U Qj) §4M(U10Qa‘>

J€lap jely, je€S
<4 p(10Q;) < 8D Y u(Q;) <8Dg Y p(Q;) = 8D0M( U @y)
jeSs JjES jes JjES

O

Proof of Theorem 4.1. For technical reasons we will consider the ty-truncated, ¢, >

0, operators
> dt\1/2
Vo @)= ([ oes@Pg)”

to
It is clearly enough to prove that V,,;, is bounded in L?(x) uniformly in ¢, > 0.
Fix p € (1, 00) and consider f € LP(u).
The first useful fact is that « — V), f(z) is continuous. Let us prove this.
Notice that
Vinto () = [t = 07 F ()| 2 (t0.00).a1/1

so that using the triangle inequality we have

Vo @) = VoS < ([ 10810 0t £0)PT)

to t
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If |z — y| < to/2 we can use (1.3) to conclude for every ¢ > t, that

10:f () =0 f W) < | selw, 2) = sy, 2)[ | f(2)] dp(2)

]Rn

|z =yl
<0 [ s 1t

<ok oyt [ WO

to/2 to + |:13 _ z|)m+a/2

|z —y[* / dpi(2) e
<o ( )
< O I llr on (fo + | — 2|)m+a/Dp

B
< Clto) =z I/ ller-

From this it follows that for |z — y| < to/2 we have

Vieto F(2) = Vi f ()] < Clto) & = yI*[| fll o,

since t~*~! can be integrated over (fy, ) to get another big dependence on .
Therefore, continuity follows. This is used purely qualitatively to conclude that
the sets

Q) = QA,tO = {V/L,tof > )\}, A > 0,

are open.

For our argument we will also need the a priori information 2, # R" and
| Vito Il p(uy < 00 (then also £1(£25) < 0o). We can achieve this by assuming that f
is compactly supported and bounded (such functions are dense). Let R > 0 be so
that spt f C B(0, R). Notice that for € R" and ¢ > t, we have

tO{
o,r) (t+ [z —y[)m+e
1

<C(f) /B((LR) mdﬂ(y)

Rm
< C(f) (t + dist(z, B(0, R)))™

. 1 1
s CUR (to + dist(z, B(0, R)))™ t7”

60 f(2)] < C(f) /B d(y)

where we used some very small auxiliary parameter v > 0. For the previous
calculation it only matters that m — v > 0, but we will take it so small that p(m —
v) > m. Integrating ¢ 2"~! over (ty, 00) it follows that

1
(to + dist(z, B(0, R)))™—"

Vo f(x) < C(f, to) R™
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From here we can read that V,;, f(z) — 0, when |z| — oco. In particular, Q, is
contained in some large ball and therefore not equal to R”, and ;(2,) < oco. Also

/ dpi(z)
e (to + dist(z, B(0, R)))Ptm=)

since p(m — 7) > m. This gives that ||V, ;, f||Lr(u) < 0.
We are done with the technical preliminaries. Since 2, # R" is open and satis-
fies 1(§2)) < oo we can use Lemma 4.3 to write

o=@

i€l

< 00

and also to extract {Q;};cs, where S C I, so that all the properties of the lemma

hold. For j € S let us write P; = ();. The cubes P; have (C;-small boundary
and are (9,2D,)-doubling, in particular (2,2D,)-doubling. So assuming that the
parameter 3 from the assumptions is larger than 2D,, we have by assumption
that there exists Gp, C P; so that u(Gp,) > 0u(P;) and V: M(R") — L">(u|Gp,)
boundedly with a constant A which is umform inj € S. For j € S denote
Gj = Gp,.

The idea is to prove using the previous cubes that given ¢, A > 0 there exists
d =0(6,0,A) = 5(e) > 0 (6 and A are fixed constants from the assumptions) so
that

46 ulfr € R Voo @) > (1 N, M2F(x) <N < (1= 1o @)

Let us show why this implies that V},;, maps L?(x) to L”(u) boundedly. So as-
sume we have proved (4.6). Begin by fixing € = ¢(6, p) > 0 so that

» 0 N\ 7
(1+¢) (1 - 16D0> =1= 5D,

Then let § = d(¢) > 0 be so that (4.6) holds. We have

p{z: Vi f(2) > (14 €)A})

< u({z: Vigof(2) > (L+ A, M2 f(2) < 0A}) + p({z: MZ2f(x) > 6A})

0
< (1= g5, ) s VisoF (@) > X))+ ul{r: M2f(x) > 60)).

Recall for g > 0 the formula

[ du=p [ ¥ (o gla) > 2)dn
0
and notice that for s > 0 we have

/wvw{az: g(z) > sA})d =—/ N u({e: gle) > A}) A

0
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Therefore, we get by multiplying by pA\*~! and integrating over \ € (0, c0) that

0 1
Wasto Wy < (1= 555 ) MVinto F gy + 55 1M

1
(1+e) 16D,

which implies that

0
Vito Ay < (1= g5 ) 1Vito Ay + Cll Al

Since ||V,4, f|| r(u) < oo this implies the desired quantitative bound.
So it only remains to prove the good lambda inequality (4.6). Notice that

Wof > (14N, M2f <A} C Oy = [QA\ UP]} ulJP.
jES jeS
Therefore, we have
p{z € R™: Vi f(x) > (1+ €)X, M2f(x) < A})

(QA\UP>+ZM{Q:EP Vi f(@) > (14 O\, M2f(x) < A})

jES JES
M<QA j)JrZM(PJ\G
JES JES
+Y p{m € Gyt Vigof(x) > (1+ )\, M2f(x) < 6A}).
JjES
Notice that

S PG <(1-0)Y u(F) =(1-06) <UP>
JES jeSs jeSs

recalling that the cubes P; are disjoint. Therefore, by also using that

M(UP> > @M(QA)

we have
<QA\U )+Zu <M(QA)—9M<UP>

(1= gy i

We are reduced to proving that

@7 Y € Gy Vi f(@) > (149N MEf(a) < 0D < 1oplh)
jES

if = d(e) > 0 is small enough.
We will do this by showing that if x € P, is such that

Vit f(2) > (1 + €)X and MMQf(x) < 0A
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then
€
Vinto (f12p;) () > 5/\7

in particular V,,(f12p,)(z) > §A. Let us show how the claim follows by assuming
this for the moment. Then it holds that

p{z € Gj: Vi f(x) > (1+ €A, MMQf(a:) < 0A})
< ,u({x € Gy Vulflap)(2) > %A})
— (G ({: V(1o di)(@) > $2})
< A fLar g

Let us estimate this further. For this we can clearly assume that there exists =, €
P; such that M/?f(xo) < 0A. Notice that 2P; C Q,, C 10Q,, where @, is a cube
centred at x( with diameter 4d(F;). Using this we have

[ Ufdi< [ 11 < 0(Qu) M a0 < u(10Q))50
2P, v

) Qg
This means that
2A6

pl{r € Gj: Vi f2) > (1 + €A, M2 f(z) < 0A}) < —H(10Qy),

and so
> u{x € Gyt Vi f(x) > (L+ )\, M2f(x) < 0A})
jeSs

Ad
<203 n10Q) <

jel

2Dy Ad 0

0,) <
il A)—161)0

()

by assuming that
Oe

< .
= 32D2A

We have shown that (4.7) follows.
Let now z € P; be such that V4, f(x) > (1+ €)X and M2 f(x) < A. We have

(14 A < Viuso f(2) < Viso (F12p,)(#) + Vi (fli2py)e) ()
and so
Vit (fl2p,) () > (14 )X = Vo (fL2p))e) ().
It is enough to show that

Vito (Fliapye) (@) < (1 + %)A
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For convenience we assume that t, < 2Rd(P;) — the opposite case is the same
calculation except easier, since there we do not need to split the integration in the
t variable. We have

2Rd(Pj) diN 1/2
ViaolFlam @) < ([ 100 1an )@ )

to

e dt\ 1/2

([ e @P ) =1
2Rd(Pj)

Notice that for all ¢ > 0 there holds that

0 (/1o ) (@)] < 0 /() % duly)
SO [ oy T g 0
- Cta;/w( [ - |_f( |27l+a du(y)
< oS @) e / O )ldu(y)
= Q.2 U(P))
< Ct*M2f(x) g (20(P;)) ™ < Cg(tpj)a(w\'

This gives that

OS5\ 2Rd(P;) 1/2
I< toldt) < O
<y, )<

Recall that RQ; N Q5 # 0 and so RP; N Q5 # (). Using this we fix z € RP; so
that V,,, f(2) < X\. We now estimate

o dt\ 1/2
< ([ 10 1en)@) - 8 lan) (P T)

2Rd(Pj)

° dt\ 1/2
(L e @r ) = v

2Rd(P;))
It holds that

we(f o) e (f,, womers)”

to 2Rd(Pj )

<o+ ([ nerd)”

2Rd(P;)
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Notice that
61 (flap,)(2)] < CE™ / fldp< o / Fldp

2P; Q(x,CL(P;))
< Ct™(Py)" M2 f(x)

< C+™(P;)™ 5\

This gives that
> dt\1/2 o0 1/2
([ ern@rd) " canyra( [ retan < oo
2Rd(P;) t 2Rd(Fj)
and so

IV <A+ CoA.
We now estimate /7/1. Notice that

105 (fl2py)e)(x) — 07 (flapye)(2)] < /R |se(z,y) = si(z, I f (y)] duly).

Since here |z — z| < Rd(P;) < t/2, we have
((Fpy)”
(t+ [z —yl)mre

|8t($7y) - St<z7y)| < C

and so
((p)° /()]
Y (f12p;e — 0" (fliop.ye < I e
0 () ) = 0 Ty ()] < O v [T )
< "B o) < 5
This implies that
0 1/2
11 < sz(Pj)aM( / 201 dt) < COA.
2Rd(P;)
We have shown that
€
Vit (flap)e)(z) < (14+CHA < <1 + 5))\
for all small enough § = d(¢). This completes the proof. O

5. BIG PIECES GLOBAL Tb

In this section we prove the “big pieces” global T'b theorem for square func-
tions. It will be highly useful in combination with the above presented good
lambda method (Theorem 4.1).

5.1. Definition. Given a cube () C R" we consider the following random dyadic
grid. For small notational convenience assume that ¢ = 0 (that is, @) is cen-
tred at the origin). Let N € Z be defined by the requirement 2V=3 < ¢(Q) <
2V=2. Consider the random square Q* = Q*(w) = w + [-2V,2V)", where w €
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[—2N=L 2N =1 —: O = Q. The set Q is equipped with the normalised Lebesgue
measure Py = P. We define the grid D(w) := D(Q*(w)). Notice that @ C aQ*(w)
for some a < 1, and 4(Q) ~ {(Q*(w)).

Given a cube () let us also denote the square function restricted to (0, /(())) by

VQ i.e.
R dt\1/2
p— 2_
Voro) = ([ 1wl £) "

5.2. Theorem. Suppose (s;)¢~o is an m-LP-family and V' is the corresponding vertical
square function. Let ) C R™ be a cube. Let o be a finite Borel measure in R™ so that
spto C Q. Suppose b is a function satisfying that ||b|| sy < Cb. For every w let T, be
the union of the maximal dyadic cubes R € D(w) for which

‘/Rbda) < Cacc0(R).

We are also given a measurable set H C R" satisfying the following properties.

e Thereis §y < 1so that o(H UT,) < dyo(Q) for every w.
o Every ball B, of radius r satisfying o(B,) > Cor™ satisfies B, C H.
o We have for some s > 0 the estimate

ilig No({x e Q\ H: V,ob(x) > A}) < Cio(Q).

Then there is a measurable set G, satisfying Go C Q \ H and the following properties:
(a) 0(Gg) > co(Q).

(D) [1ay Voo fll2e) < Cll fll 120 for every f e L?(o).

The constants c and C' depend only on the preceding constants.

Proof. In this proof we write A < B, if there is a constant (absolute or depending

on fixed constants) C' > 0 so that A < C'B. We may also write A ~ Bif B S A S
B.

Suppressing the operator. We begin by suppressing our operator appropriately.
Set
So={x € Q: Vyob(z) > N},
where 0 < ¢ S 11is large enough. Now simply define
§t<x7 y) = St(x7 y) 1R”\So (Q?)
Notice that (5;);~¢ is a measurable family of kernels satisfying (1.1) and (1.2),

which is all we shall need in what follows. Now, V, o (and similar objects) are
defined in the natural way using the kernels s,. Then for any f we have

(5.3) Voaf (x) = Voo f (@) lrns, () = Vio f () 1em @01 gb2an (2);
and from here we can easily read two key things about these suppressed opera-
tors. The first is that for any f we have

(5.4) Voof(x) = Vyof(z) forz € R"\ Sy,
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and the second is that

(5.5) Veqb(z) < Ao for every z € Q.

Finally, with a large enough choice of A, we have (for every w) that o(H UT,, U
So) < §10(Q) for some 0; < 1. Indeed,

C
o(So\ H) <o({z € Q\ H: Vyob(z) > \o}) < A—ja(Q).
0
At this point Ay < 1 can be fixed by demanding that it satisfies
20
Ay > ——
"7 T 5y
whence we conclude that

1+ 6o

(5.6) o(HUT,USy) <o(HUT,)+0c(Sy\ H) < 5

o(Q) =:6,0(Q), 6 < 1.

We are now done with suppressing the operator.

Definition of the set G. We will next define the set Gi. This is done by setting
po(x) =P{weQ: 2 e\ [HUT,US}),
and then defining

GQ:{xGQ: po(z) > 1_261 :ZT}CQ\H.

We will show that 0(Gg) 2 0(Q). Notice first that by (5.6) we have that

Q

/ pol(z) do(z) = / o(Q\ [H UT, U S) dP(w) > (1 - 6,)0(Q).

Q

Since 1 — py > 0 everywhere,and 1 —py > 1 —7=(1+6;)/20on Q \ Gg, we have
[-m)do@ > [ (1= i) o) = 50\ Go)

Q

Q\Gq

We conclude that

9
ﬂ@\@ﬁ§1+&

(0(@) — /on(:v) da(x)) < :

and so

7(Gg) > (1 -
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Beginning of the proof of the L? bound. It remains to prove the L? estimate
11ao Voo fll2e) S |2 for every f € L?*(0). The key property of Gy, is as
follows. Suppose h > 0 is any positive function. Then we have that

/ h(z)do(x) < 7'_1/ po(z)h(x)do(z) = T_le/ h(z)do(x).
GQ GQ GQ\[HUTwUSQ]
We apply this in the following way:

PRSI / / 07 52) < do(a)
Q) dt
<r B [ | s@p S dota)
GQ\[HUTMUSO} 0

min(¢(R),£(Q)) dt
:7-*1Ew Z/ / ’(9;7 ( )|27d0( )
ReD, Y [BNGQI\[HUTwUSo] J £(R)/2

where Dy = D(0).
Given w we then write
2= 2 T2
ReDy ReDy ReDy
Ris D(w)-good  Ris D(w)-bad

where R € D, is said to be D(w)-good if d(R,0P) > ((R)"((P)'™ for every
P € D(w) satisfying ¢(P) > 2"¢(R). Here r < 1is a fixed large enough parameter,
and v := a/(2m + 2«). It is a standard fact by Nazarov-Treil-Volberg that given
R € Dy we have that

(5.7) P({w € Q: R is D(w)-bad}) < 7/2

for a large enough fixed r. This is an exercise in elementary probability, which
we skip here.
Using (5.7) we estimate

min(£(R),6(Q)) dt

ReDy [RNGQI\[HUTwUSo] J £(R)/2
Ris D(w)-bad
min(¢(R),£(Q))
< ¥ P({fweQ: RisD(w -bad}/ / 07 ()|2_d0<)
ReDg RQGQ

_Q/GQ/O 97 S 5 doo).

To be precise, for the following we would need the a priori finiteness of this term.
However, this is easy to arrange in a multiple of ways (e.g. do these calculations

first by replacing f(f @ with /. “9) and let ¢ — 0 in the end), so we skip this
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technicality. We may now conclude (using also that 67 f(z) = 67 f(z) for every
z € @\ S by (5.4)) that

o Voo 72

min(£(R),4(Q)) _ dt
<2r7'E, Z / / 107 f (z )|2 © do(z)
ReDy [RNGQI\[HUT,USo] J £(R)/2 t

R is D(w)-good

st X [0 ser

ReDy
Ris D(w)-good
R¢ HUT,,

We will now fix w, write D = D(w) and 7' = T;,, and prove that

min(4(R),£(Q)) ) dt )
58 >/ / 2 @) 5 do2) S 1710
REDy tR)/2
R is D-good
R¢ HUT

This will then end the proof.
The important property of the set T"is that if R € D and R ¢ T then

’/Rbda‘ > o(R)

while the important property of the set H is that if L C R” is an arbitrary cube
satisfying L ¢ H then o(AL) < A™((L)™ for all A > 1. It is useful to say that
R € DY (tr stands for transit) if R € Dy, 0(R) # 0and R ¢ HUT, and P € D" if
PeD,o(P)#0and P ¢ HUT. Note that D really means w-transit cubes from
D, (and one should really write Df (w)), but w is fixed and so T is fixed and we
do not need to insist on this.

Martingale decomposition of f. It is time to expand the function f in the grid
D using b-adapted martingales only in the transit cubes P € D'". Denote (f)4 =
(NHa=oc(A)~" [, fdo,if o(A) # 0. Let Py = Q*(w) (see the Definition 5.1) so that
all P € D satisty P C F,. Without loss of generality we can assume that sptb C @
and spt f C Q. Define

<f >Po b

<b>P0 .

(This is actually independent of w since it just equals Ey f, because spto C () C
Fy). For any cube P € D' define the function Apf as follows:

Apf= > Ap(f)lp,

P’ech(P)

EPof =
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where

Fpr e i DI tr
(4 — 2y if P e D,

Ap(f) =
#(f) {f—%f if P' ¢ D",

It is easy to see that [, Apfdo =0, P € D".
Notice that P, € D", since o(F)) = o(Q) and every non-transit cube P has to
satisfy o(P) < o(H UT) < dyo(Q). It holds that

f = Z APf—I—EPof
PeDtr
o-a.e. and in L*(0), and that
(5.9) D ALl + 1BRfllze) S 11720
PeDtr

Let us prove the previous claims now. Given x € F, and k£ > 0 let P denote
the unique cube P € D for which ¢(P) = 27%(P) and = € P (so that in particular
Py = Fy). For kg > 0 define

Skf() =" D> Apf(z)+ Epf(x).

PeDtr
L(P)>2=k04(Py)

Suppose first that z is such that P* € D" for all k£ > 0. Then we have that
{f >P,g'0
(b)pz.

since the sum telescopes. Suppose then that x is such that P? ¢ D' for some k.
Let s(x) > 1 be an integer so that Pg,, , € D" but Py, ¢ D". Then for ky < s(z)
we have that
(f >P;:O

{b)pz

Skof(x) - b(I)>

Skof(‘r) =

b(x),

and for ky > s(x) that
Skof(m) = f(l’)

We infer that for o-a.e. x € (Q we have

lim Sy, f(z) = f(z)

ko—o0
and
St f (@)] S Moo f(2).
By dominated convergence it then also follows that in L?(c) we have

im Sy f = f
k0~>oo

We have shown that
f=)Y_ Apf+Epf

PeDtr
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o-a.e. and in L*(0).
We still need to prove the estimate

Y 1Al + 1 Er fllze) S 1172

PeDtr

It is obvious that || Ep, fl|12(0) S I f[|72(,)- Let us then split

STAr ey = D D I Apfliem+ D D e Apfliee,

PeDir PeD P'ech(P) PeDir P'ech(P)
preptr pPrgptr
=1+1lI.

Define also the standard martingales
Dpf(x)= Y [N —{rllp(z), PeD.
Prech(P)
It is clear by orthogonality that
> I1Defli2) < 111220
PeD

We now estimate the term [ above. Given P € D' and P’ € ch(P) for which
P’ € D' notice that

(f)pr <f>p)
A . — b
et = (e~ oy
(D, (UL,
Oypr (b)p (b)p  (b)p
{b)p — (b)p b
pr— lb+ /) —_—
<b P<b>P’ <f>P (<f>P <f>P) <b>P
This implies that
|Apfle| S |Dpble[(f)pr| + | Dp flpr|,
so that
IS PP e + Y. Y. 11pDpbl7e ()]
PED PED Prech(P)
<1320y + D 11pDpwbll7a o (el S 111200,
PeD
PCPy
where the last estimate used the fact that the sequence ap := [|[1pDpmb||?, (o)

satisfies the Carleson estimate

> apSo(R), ReD.
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This is easy to see:

Z ap = | 1RDpybl|72 0 + Z 1P Dpwybll72(,)
PCR PCR

So(R)+ ) I1IDp(bLR) 720 < o(R) + [b1gl72(0) S o(R).

pPeD

We now deal with the term II. Given P € D' and P’ € ch(P) for which
P & D' and o(P’) # 0, notice that

s - (-42) (- )

This implies that
|Apfle S+ Ky el + 1Dpflel,

and so

Y S [ ifdo X 18es e S 1

PeDt P'ech(P) PeD
Plthr

Here we used that the maximal non-transit cubes are disjoint. This completes our
proof of the L? estimate for the martingales.

In what follows it will be convenient to exploit notation by redefining on the
largest level F, the operator Ap, f to be Ap f + Ep,f. This means that we may

write
f=>Y Apf

PeDtr

where [, Apfdo = 0unless P = P,

Continuation of the proof of the L? bound. Going back to (5.8) we see that we
need to prove that

min(4(R
Z // ‘ Z QUAPf ‘ _da <Hf”%2(a)-

ReDtr PEDtT
Ris D-good

Given R € D§" which is D-good, the P € D summation is split in to the follow-
ing four pieces:

(1) P: ((P) < ((R);
(2) P: £(P) > ¢(R) and d(P,R) > {(R)"((P)"~
(3) P: {(R) < £(P) < 270(R) and d(P, R) < ¢(R)'{(P)'~
(4) P: ((P) > 274(R) and d(P, R) < ((RY{(P)""
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The matrix Apr. Define

g(P)a/Qg(R)a/Q
D(P, R)mte

D(P,R) :={(P)+{(R) 4+ d(P, R).

App = o(P)Y?a(R)"Y?,

We will prove the following extremely useful estimate

Z ApPrRTPYR S ( Z x%)l/Q( Z y}z%)l/Q

Pe’Dtr Peptr Re'D(t)’r
ReDY"

for every zp,yr > 0. Therefore, we have
2\ 1/2 1/2
ReDf" PeDtr PeDtr

which is an estimate we shall have frequent use for.
By symmetry it is enough to prove that

Z Apnitryn < < Z ﬁ))l/Q( Z y?%)l/z‘

PeDtr PeDtr ReDl"
ReDY"
UP)<L(R)

Let us first note that this claim follows if for every R € D{" we have
> Appo(P)'? < o(R)?

PeDtr
{(P)<L(R)

and for every P € D' we have

Z APRU(R)1/2 S U(P)l/z.

ReDY
Y{(P)<L(R)

Indeed, assuming these inequalities we have for given R € D} that
Z APR.Z‘p = Z A}D/éO'(P)l/‘l 'A}D/;J(P)_I/ALZEP

PeDtr PeDtr
(P)<U(R) (P)<U(R)
1/2
(S )
peDtr
YP)<U(R)
1/4< Z APRU -1/2 2) /2’

PeDtr
{P)<L(R)
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and so

I,S Z yRa(R)1/4( Z APRU<P)1/2Q;?)>1/2

ReD§" pPepir
L{P)<U(R)
1/2 1/2 1/2 1/2
<( X ) (X Ao ) s (X ) (X w)
ReDY" PeDtr PeDtr ReDYr

So will just prove these inequalities for I and Ip.
Let us first fix R € D} and write Iy as follows

n=o® 5 (5 ) " o o)

- \{(R) P, R)mte
peDtr
((P)<{(R)
- UR)"
_ 1/2 ak/2
=o(R) 22 Z D(P, R>m+aU(P>'
k>0 pPeDir

o(P)=2-F{(R)

We fix £ > 0 and then show that the last sum is < 1, which yields the desired
bound for . This can be seen as follows

!(R)®
2. oo ap”)

PeDtr
o(P)=2—k((R)
1 ; 1
< P g-i___~ P
<wmr 2 D 2gmmw 2 P
PeDir j>0 PeDtr
o(P)=2-*(R) o(P)=2-*(R)
d(P,R)</(R) 21 0(R)<d(P,R)<2i+1((R)
< o(10R) _0j O(2°R)

=y 2 my <

where we used that R ¢ H by transitivity, and so o(AR) < A™((R)™ for all A > 1.
Next, we fix P € D and write Ip as follows

Ip=a(Py Y2t S e

k>0 ReDYr
o(R)=2%¢(P)
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Again, for a fixed k > 0 we will show that the last sum is S 1. Let P, be a cube
concentric with P and of side length ¢(Py) = 2"¢(P) = ¢(R). We have that

((R)"
2. pip.my ")

ReDYr
((R)=2%4(P)
1 1
< [N N ol — R
Swmr 2 X Vemmy 2 W
0 0
{R)=((Py) L(R)=L(Py)
d(P,R)<L(Py) 294(Py)<d(P,R)<2i+1L(Py)

<1

o(105) IR ICAR N
T Gy S

RSO A
where we used that P, ¢ H (since P ¢ H by transitivity), and so o(AP;) <
A Pg)™ forall A > 1.

Summations (1) and (2). Notice that in (1) we have ¢(P) < ¢(R) < {(P,) so that
[ Apfdo = 0. Therefore, using the y-Holder for 5, we get for (z,t) € Wg =
R x [¢((R)/2,((R)) that
B 8rf ) = | [ [lo0) = 5o cr)l Anf(0) doty)
(P
<

The Holder estimate can be used, since here

ly—col S UP) < UR) St

This implies that
(5.11) 07 Apf(@)] S Apro(R) Pl|Apflli2),  (2,t) € Whe

In the case (2), the size estimate for 3, yields
5 ((R)

o < N S

But this yields the same bound as in (5.11), since here
((R)

d(P, R)m+e

To see this, notice that it is obvious if d(P, R) > ¢(P). In the opposite case note
that d(P, R)™** > D(P, R)™**((P)~*/2((R)*/?. This is seen by combining the
facts that d(P, R) > ((R)"¢(P)'™7,ym + va = a/2 and D(P, R) < ((P):

d(P, R)™ > ((R) "M+ g(pymteg(p)=vmte) > p(R)*/2(P)~/2D(P, R)™*°.

a(P)'2|Ap | 12(0), (x,t) € Whg.

o(P)V? < Apro(R)™V2,
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Thus, also in the case (2) the estimate (5.11) holds. The cases (1) and (2) are
therefore under control via the estimate

S [ Aralarflizg] £ 3 1807 e S 1710,

ReDfr PeD PeDtr

Here we used (5.10) and (5.9).

Summation (3). The summation (3) is even easier. Using that P and R are both
transit, t ~ ¢(R) ~ ¢(P) and the size estimate for 5, we see that

07 Apf (@) S0 (PY I APf |12y S (R Apf 12y, (2,1) € W,

This can then easily be summed, since given R there are only finitely many P
such that ((P) ~ ¢(R) and d(P, R) < min({(P),¢(R)). Denote this by P ~ R, and
simply bound

X 1aefliw] § X 18efl 3 1S 1B,

ReD§"  PeDtr peDtr ReDf"
P~R R~P

Summation (4). In this summation the D-goodness of R forces that R C P. For
each R € Df satisfying that R is D-good, R C P, and {(R) < 27"¢(P,) we let
PrreD, ke{r,r+1,...,log,[l(F)/t(R)]}, be the unique D-cube satisfying that
((Pry) = 2¥/(R) and R C Pgy. Such a cube exists since R is D-good. Moreover,
since R ¢ HUT thenalso Pry ¢ HUT i.e. Pgy € D. We see that we only need
to prove that

log,[£(Po)/¢(R)]

min(4(R),£(Q)) ~ 2 dt 2
Z / / ’ Z 07 Apy,. f(x) ry do(r) < ||fHL2(0)‘
R JUR)/2

ReDE": RCPy k=r+1
Ris D-good
U(R)<2-70(Py)
Define
U Pmioy <f>PR"“, ifr+1<k<log, E(PO),
Brpe s = (B /B = 4 i O - 4Ry
PR k-1 Pr PR k-1 (N Pr i =1 2(Py)
(bPRk . N Og2m'

Notice that the fact that Pry € D" forall k € {r,r +1,...,log,[¢(P)/¢(R)]} was
used here. We write

APR,k-f = 1PR,k\PR,k71APR,kf + 1PR,k—1APR,kf7

where

1PR,k71APR,kf = 1PR,k—lBPR,k71b = BPR,kflb - 1Rn\PR,k—1BPR,k71b'
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We can now see that ngﬁ(lp‘))/ e QUA P f €quals

log, [¢(Po)/¢(R)]

- Z BPR,k—leg(an\PR,k—lb)
k=r+1
log, [£(Po)/£(R)]

o {(f)Pa. 5,
+ Z Qt <1PR,k\PR,k—1APR,kf) + <b> - Qt b,
k=r+1 PR

where we used that

log, [¢(Po)/¢(R)]

S e

k=r+1 <b>PRvT

Let us start deciphering this by proving that the term

fP i min(4(R),4(Q)) - dt
ne > e [ e @ o)
UR)/2

(b)
ReDE™: RCPy PR r
R is D-good
L(R)<27TL(Po)

is under control. We simply estimate

min((R).4(Q)) _
NS Y ((Nefar,  ar= Y // b L doo)

PeDtr ReD{": RCPy UR)/2
R is D-good
L(R)<27T4(Py)
Pr =P

To have IT < || f|13. (o) it is enough to verify the Carleson property of (ap)pep. To
this end, let S € D be arbitrary. We have that

Yoap< Y //S 07b(x )12%@( )

PeD Rethr >< 0 Z(Q) mVVR
pPcS RCS

//SW(Q) ) doo) = / [V, ob()] do() S o(S),

since V, ob(z) < 1 for every z € spto by (5.5).

We now deal with the rest of the terms. Let us control |Bp,, , 5;’ (1gm\ Py, 0) ()]
for (z,t) € Wg. Notice that R C B(x,d(R,0Pry-1)/2), since d(R,0Prj_1) >
2"0=7¢(R) > C4¢(R) by having r large enough to begin with. The point of this
observation is that B(z,d(R,0Pry-1)/2) ¢ H. Moreover, we clearly have that
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B(x,d(R,0Pgk-1)/2) C Prj—1. Using these facts we get

((R)®
87 (L D) (2)] < ()

T do(y)
/Rn\B(x,d(R,aPR,kl)/z) |z — y|mte

V(R a2
< UR)d(R, 0Py 1) < (m) ~ g-ak/2,

where we also used that d(R, 0Pr 1) > {(R)Y?((Pg_1)"/? (which follows since
R is D-good). Since Pr;—1 ¢ T 'we have

|BPR,k—1|U(PR,k—1) 5 ‘/ BPR,k—lbda‘
Pr k-1

- ’/ Apg, f dU‘ < U(PR,kfl)l/QHAPR,kaLQ(U)'
Prr_1

Combining these estimates we get for (z,t) € Wy that
(5.12) | B 107 (Tem by D) (2)] S 2720 (Pri—1) ™| Apy fll200)-

Let us still estimate |5§’(1pR’k\pR‘k71ApR’kf)(9;)| for (z,t) € Wg. Let S € ch(Pgry),
S # Pr —1. We do not know whether this cube is transitive or not, but it shall not
matter. Indeed, we just estimate

W/P |Apy, f(y)] do(y)

d
((R) N2 o (Ppry)"/?
< , A »
S <€(PR71€1)) €<PR,k71)mH PR,kaL (o)

SJ 2iak/20<PR,k—1)71/2HAPR,kaLQ(U)?

where we used that ((S) = {(Pry_1), d(R, S)™ ™ > ((R)*/?((S)*/?¢(S)™ and the
transitivity of Pry_1, Prir. S0 07 (1p,,\ P, Dpp, f) ()| satisfies the same esti-
mate as in (5.12).
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We are now ready to complete the whole proof. The following estimate is all
that remains:

log,[£(Po)/¢(R)]

2
Y o(R) [ > 20 (Pri) VP Ap, fllze)
ReD§™: RC Py k=r+1
R is D-good
O(R)<2-T4(Py)

log,[£(Po)/4(R)]

S Y aR®) Y 2Po(Praa) Ak Sl

ReD{": RCPy k=r+1
Ris D-good
L(R)<27"4(Po)

=Y > aR) Y 2 0(Praa) [ Ar S a0

u=r+1 Re’Dé’f‘; RCP, k=r+1
Ris D-good
L(R)=2""4(Py)

= Z 27ak/2 Z Z U(R)U(PR,kfl)il HAPR,ka%Z(O')

k=r+1 u=k ReD{": RCPy
R is D-good
U(R)=27"4(Po)

_ Z 2 aWZ > HAPU)fH%?(U)% > (R

k=r+1 PeDtr ReD§": RCPy

Z(P) =2k=1=uf(Py) Ris D-good
Pgr—1=P
ak/2 2
E 2” E E 1A pa) flIT2 (0
k=r+1 PeDtr

e(P) 2k—1-ug(P,)

S Z 2” akﬂz Z AR 117200

k=r+1 pPeDtr
K(P) 2k—ug(Py)

= (3 ) (X 18r Be) S 1 e
k=r+1 PeDir

We have proved the estimate ||1¢, V5.0 fll22(0) S ||| 22(o) for every f € L?*(o), and
so the proof of the big pieces T'b is now complete.
U

6. LOCAL Th THEOREM

The following local T'b theorem is the main result of [1].
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6.1. Theorem. Let 11 be a measure of order m in R™ and By, By < o0, €y € (0, 1) be given
constants. Let also (s;)i>o be an x-continuous m-LP-family, and V' be the corresponding
vertical square function. Let 3 > 0 and C, be large enough (depending only on n).
Suppose that for every (2, B3)-doubling cube ) C R™ with Cy-small boundary there exists
a complex measure vg so that

(1) sptvg C Q;
(2) 1(Q) = ro(Q);

(3) |vall < Biu(Q);
(4) For all Borel sets A C Q satisfying u(A) < eou(Q) we have

|VQ|( )< 3284

Suppose there exist s > 0 and for all () as above a Borel set Uy C R™ such that
0l (Uq) < i3, and

165,
sup Nu({z e Q\Ug: Vorg(x) > A}) < Bs|lvgl-
>

Then V,,: LP(p) — LP(p) for every p € (1, 00).
6.2. Remark. 1f V,,: L*(u) — L*(u) boundedly, then V': M(R™) — L"*°(u) bound-

edly. In this case, given v like above one has to have

sup Mi{z € Q1 Vorg(w) > A}) < sup Au({e: Vig(x) > A) < Cllrgll.

This makes the assumptions necessary.

6.3. Remark. Set vy = bg dp for some function bg supported in () satisfying that
n(Q) = fQ bo du and fQ bol?dp < p(Q). If ¢ > 1 we automatically have (4) (and
of course (3)) using Holder’s inequality. But one can have ¢ = 1 if one has (4) by
some other virtue. The testing condition on the operator side is extremely weak,
e.g.

sup Au({z € Q: V,qbg(x) > A}) < Bop(Q)

x>0
suffices. In the previously known best results one needed an L? norm also on the
operator side if by € L9, ¢ > 1, like in the above discussion.

We also allow to work with measures, allow a small exceptional set Ug, and
require the existence of v only in very regular cubes Q.

We record the following easy lemma.

6.4. Lemma. Let a cube () C R™ be given and G C (). Suppose also that v(Q) < (Q)™.
If 11eViofllzw) S Ifllezw) for every f e L*(v) satisfying spt f C G, then also

~

116V flle2w) S| f 2 for every f € L*(v) satisfying spt f C G.
Proof. This follows from the Exercise 3 in Set 3. OJ

Next, we prove the main Proposition.
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6.5. Proposition. Let p be a measure of order m and By, By < oo, ¢ € (0,1) be
given constants. Let also (s;)¢~o be an m-LP-family, and V' be the corresponding vertical
square function. Let () C R™ be a fixed cube. Assume that there exists a complex measure
v = vg such that

(1) sptv C Q;

(2) p(Q) = v(Q),
(3) vl < Bip(Q);
(4) For all Borel sets A C Q satisfying u(A) < eou(Q) we have

1]
< X
vI(4) < 3284

Suppose there exist s > 0 and a Borel set Uy C R” for which |v|(Ug) < 1'%’2‘1 so that

Sup Nu({z e Q\Ug: Vor(z) > A}) < Byl|v||.
>
Then, there is some subset G C Q \ Ug such that u(Ggq) 2 1(Q) and

ao Vi ez S 12
for every f € L*(u) satisfying that spt f C Go.

Proof. We can assume that spt ;1 C (). Indeed, if we have proved the theorem for
such measures, we can then apply it to ;|Q. Let us denote ¢ = |v|, where |v|
is the variation measure of v. Also, let us write the polar decomposition of the
complex measure v as v = bdo, where b is a function so that |6(z)| = 1 always.

The idea is to apply the big pieces global T'b theorem from Section 5 (Theo-
rem 5.2). It will be applied to the measure o and the bounded function b. Using
stopping times we need to construct some exceptional sets so that the assump-
tions of that theorem are verified. Moreover, we need to be able to come back
to the ;1 measure — this requires encompassing additional stopping times to the
construction.

We fix w, and write D(w) = D. We also write Dy = D(0). Let A = A,, consist of
the maximal dyadic cubes R € D for which

) /Rbdo‘ < no(R),

where 1 := 1 B;". We set

T=T, = U R C R™
ReA
Notice that

o(Q) = V]| < Bip(Q) = Bun(Q) = B, /Q bdo,

Then estimate

/dea:‘/dea‘:)/Q\deaJr%/Rbda( <o(Q\T) +10(Q).
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Since nB; = 1/2 we conclude that
7(Q) < Buo(Q\T) + 30(Q)
and so
0(Q) < 2Bi[o(Q) — o(T)].

From here we can read that

o(T) < (1 —=n)o(Q).
Next, let F consist of the maximal dyadic cubes R € D, for which

o(R) > %mm
o(R) < 6(R),

where § := 1/16 = By ". Let F; be the collection of maximal cubes R € D,
satisfying the first condition, and define 7, analogously. Note that

M( U R) < eop(Q),
ReF
so that we have by assumption (4) that
1
/(U R) < 557(@ = 0(Q).

ReF;

Finally, we record that

o(UR)=D otry<a Y ur)=ou( |J R) <on(@) <0(Q).

ReF> ReF ReF> ReF>

H=JR

ReF

We may conclude that the set

satisfies o(H:) < 200(Q) = 10(Q).
We now record the important property of the exceptional set H;. Letz € Q\ H;.
For any R € D, satisfying that x € R we have that
L _ o) B
328, — u(R) T €
From this we can conclude (using a dyadic variant of Lemma 2.13 of [2] or Lemma
A.5; see also Exercise 5 in Set 2) that for all Borel sets A C R" there holds that

AN (Q\ H) < 0(AN (Q\ H) < (AN (@ 1)
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In particular, we have that 0| (Q \ H1) < pu[(Q \ Hi). Using Radon-Nikodym
theorem we let ¢ > 0 be a function so that

o(A) = /Asodu

for all Borel sets A C @ \ H;. We obviously have that ¢ ~ 1 for y-a.e. x € Q \ H;.
We need another exceptional set H,. To this end, let

p(r) = sup —O<B:i’ )

For py > 0let E,, = {p > po}. Using that Mg ,,,: M(R") — L"*°(u) boundedly we
see that

=: Mpmv(x).

CB
o Q).

We fix py < 1 so large that j(E,, jom) < €ou(Q), so that in particular o(E,, /om) <

20(Q). For x € {p > po} define

C
#(Epy) = n{Mrmv = po}) < =

r(z) =sup{r > 0: o(B(z,r)) > por™},
and then set
Hy:= |J B(a.r(x)).
ze{p>po}

It is clear that every ball B, with o(B,) > por™ satisfies B, C H,. Notice that if
y € H,, then thereis z € {p > py} so thaty € B(x,r(x)), and so o(B(y, 2r(z)) >
o(B(x,r(x)) > por(x)™ = po2~™[2r(z)]™. We conclude that H, C E,,/om, and so
o(Hy) < 10(Q).

The assumption about the set Uy reads o(Uyp) < Io(Q). Define now H =
H, U Hy U Ug. The properties of H are as follows:

(1) We have o(H) < Z0(Q), and so o(H UT,) < (1 —n/2)0(Q) = 10o(Q),
1 < 1.

(2) If 0(B,) > por™, then B, C H.

(3) We have a function ¢ so that

o) = [ e
A
for all Borel sets A C Q \ H,and ¢ ~ 1 for y-a.e. z € Q \ H.

We also have for every A > 0 that
No({xe Q\ H: V,ob(x) > A})
=XNo({reQ\ H: Vyr(z) > A})
S AVu({z € Q\Uq: Vor(z) > A}) < Bslv|| = Boo(Q).

Appealing to Theorem 5.2 with the measure o and the L> function b we find
Go CQ\HCQ\Ugsothato(Gg) 2 o(Q) and

(6.6) NeoVoolllze S Il

ool
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for every f € L?*(o).
Suppose now that g € L?(n) and sptg C Gg. We apply Equation (6.6) with
[ =g/¢ (since Gg C @\ H wehave ¢ ~ 1 pi-a.e. on the support of g). Notice that
o Voo(9/)l2e) = ag Vinadllize) 2 Mo Viedllzz
so that
1leoViadllizgy S 119/¢elr20) S N9llr2-
Applying Lemma 6.4 we conclude that

Meo VS ez S 1F 112
for every f € L?(u) satisfying that spt f C G. Moreover, we have that
M@ < 0@ S a(Go) = [ pdus n(Go
Q
We are done. O

We are ready to prove the local 7'b theorem.

Proof of Theorem 6.1. Proposition 6.5 gives for every (2, 3)-doubling cube @) C R
with C;-small boundary a subset G C () such that ¢(Gg) 2 1(Q) and

11aoVifllzey S I llz2e

for every f € L?(u) with sptf C Gg. Applying the non-homogeneous good
lambda method i.e. Theorem 4.1 and Remark 4.2 gives the result. O

APPENDIX A. SOME STANDARD RESULTS FROM GEOMETRIC AND HARMONIC
ANALYSIS

A.l. Covering theorems.

A.1l. Theorem (5r-covering theorem). Let B be a family of either closed or open balls
(or cubes) in R™ such that

sup diam(B) < oo.
BeB

Then there exists By, Ba, ... € B so that B; N B; = () for i # j, and
U Bcl 5B
BeB i

A.2. Theorem (Besicovitch covering theorem). Suppose A C R™ is bounded and that
for every x € A we are given some closed ball (or cube) B, centred at x. Then there are
{B;}; C {Bz}sea so that

ACUBi and ZlBiSC"“

where C,, < oo is a purely dimensional constant.
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A.2. Absolute continuity, derivation of measures, Radon-Nikodym. Consider
two Radon measures i and o in R". We say that o is absolutely continuous with
respect to p if p(A) = 0 implies o(A) = 0. This is denoted ¢ < L.

A.3. Example. Suppose p is given and f > 0 is locally integrable. Define

o= fdu i.e. o(A) = / fdu.
A
Then clearly o < p.

An extremely useful result, the Radon-Nikodym theorem, says that all abso-
lutely continuous measures arise in this way.

A.4. Theorem (Radon-Nikodym). Consider two Radon measures jiand o in R". Sup-
pose that o < . Then

o(4) = [ iy
for all Borel sets A C R", where f can be defined for ji-a.e. x by
o(B(z,r))

f=D(o,u,x):= lim w(B(x, 1))

The most natural way to check whether o < (1 is as follows.

A.5. Lemma. Define

o o(B(z, 1))
D(o,u, ) = hrrn_}glf m
Suppose that A C R™ is a Borel set so that for some constant X > 0 we have
sup D(o, i, x) < A
xcA
Then o(A) < Au(A). In particular, if B C A and pu(B) = 0 then o(B) = 0, i.e.
ol A< plA

For the proofs of these results, see Section 2 of [2]. These results (and more
about absolute continuity) are also proved in the course Real Analysis II. We will
also consider some details in the exercises.
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