Department of Mathematics and Statistics

Fourier analysis

Exercise 1

Sept. 7, 2015

1. Show with help of Euler's formula, that

$$
\int_{0}^{L} \sin \left(\frac{k \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) d x=\frac{L}{2} \delta_{k, n}
$$

2. a) Let $f(x)=\sum_{n=-N}^{N} c_{n} e^{i n x}$ be a trigonometric polynomial. Use Euler's formula to show that equivalently, f can be written in the form

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n=1}^{N} a_{n} \cos (n x)+\sum_{n=1}^{N} b_{n} \sin (n x) \tag{1}
\end{equation*}
$$

Determine a_{n}, b_{n} in terms of the coefficients c_{n}. And conversely.
b) Show that the above coefficients a_{n} and b_{n} can be obtained from the formulae

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos (n x) f(x) d x \quad \text { and } \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (n x) f(x) d x, \quad n=1, \ldots, N, \\
& \quad \text { with } \quad a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x
\end{aligned}
$$

3. a) If f is odd, that is $f(x) \equiv-f(-x)$, show that $\widehat{f}(n)=-\widehat{f}(-n)$ and that the Fourier series (1) consists of sin-functions only.
b) If $g:\left[x_{0}, x_{0}+L\right] \rightarrow \mathbb{C}$ is given, define $f(x)=g\left(\frac{L}{2 \pi} x+x_{0}\right), x \in[0,2 \pi]$. Show that

$$
\widehat{g}(n)=\widehat{f}(n) e^{-i \frac{2 \pi n}{L} x_{0}}, \quad n \in \mathbb{Z}
$$

4. Suppose $f(x)$ is the 2π-periodic function defined by $f(x)=\pi-|x|$, for $x \in[-\pi, \pi]$. Show that the Fourier coefficients of f are given by

$$
\widehat{f}(n)= \begin{cases}\pi / 2 & \text { if } n=0 \\ \frac{2}{\pi n^{2}} & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even, } n \neq 0\end{cases}
$$

5. a) Suppose that $f(x)$ is the function of Problem 4. Show using results from the lectures, that at every point $x \in[-\pi, \pi]$ the Fourier series of f converges to $f(x)$.
b) Evaluate the series at $x=0$ and show that

$$
1+3^{-2}+5^{-2}+\ldots=\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8} .
$$

