University of Helsinki

Department of Mathematics and Statistics

Computational statistics 1 — exercise set 5

Exercise 1: Let the observed data $\{y_i\}_{i=1}^n$ be binary with each y_i being an independent realization of a Bernoulli random variable Y_i with parameter $\mu_i = \Pr(Y_i = 1)$. Each $\mu_i = \mathbb{E}[Y_i]$ is modeled with a logistic function, that is,

$$\mu_i = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} \quad \Leftrightarrow \quad \log \left\{ \frac{\mu_i}{1 - \mu_i} \right\} = \beta_0 + \beta_1 x_i \,,$$

where $\boldsymbol{x} = [x_1, \dots, x_n]^T$ is a vector of predictor values and β_0 and β_1 are parameters.

- 1. Write down the likelihood $p(\boldsymbol{y} | \beta_0, \beta_1)$ for the logistic regression model.
- 2. Find the posterior $p(\beta_0, \beta_1 | \boldsymbol{y})$ assuming independent Normal priors with $\mu_{\beta_j} = 0$ and variance $\sigma_{\beta_j}^2$, where j = 1, 2.
- 3. Demonstrate that marginalizing u out of the joint posterior

$$p(\boldsymbol{u}, \beta_0, \beta_1 | \boldsymbol{y}) \propto \prod_{i=1}^{n} 1 \left(u_i < \frac{e^{\beta_0 y_i + \beta_1 x_i y_i}}{1 + e^{\beta_0 + \beta_1 x_i}} \right) \exp \left\{ -\frac{\left(\beta_0 - \mu_{\beta_0}\right)^2}{2\sigma_{\beta_0}^2} - \frac{\left(\beta_1 - \mu_{\beta_1}\right)^2}{2\sigma_{\beta_1}^2} \right\}$$

yields the posterior $p(\beta_0, \beta_1 \mid \boldsymbol{y})$.

4. Implement slice sampling by generating

$$u_{i} \mid \boldsymbol{u}_{-i}, \beta_{0}, \beta_{1}, \boldsymbol{y} \sim \operatorname{Unif}\left(0, \frac{e^{\beta_{0}y_{i} + \beta_{1}x_{i}y_{i}}}{1 + e^{\beta_{0} + \beta_{1}x_{i}}}\right)$$

$$\beta_{0} \mid \boldsymbol{u}, \beta_{1}, \boldsymbol{y} \sim \operatorname{Normal}(\beta_{0} \mid \mu_{\beta_{0}}, \sigma_{\beta_{0}}) \prod_{i=1}^{n} 1\left(u_{i} < \frac{e^{\beta_{0}y_{i} + \beta_{1}x_{i}y_{i}}}{1 + e^{\beta_{0} + \beta_{1}x_{i}}}\right)$$

$$\beta_{1} \mid \boldsymbol{u}, \beta_{0}, \boldsymbol{y} \sim \operatorname{Normal}(\beta_{1} \mid \mu_{\beta_{1}}, \sigma_{\beta_{1}}) \prod_{i=1}^{n} 1\left(u_{i} < \frac{e^{\beta_{0}y_{i} + \beta_{1}x_{i}y_{i}}}{1 + e^{\beta_{0} + \beta_{1}x_{i}}}\right)$$

Note that the full conditionals $p(\beta_0 | \boldsymbol{u}, \beta_1, \boldsymbol{y})$ and $p(\beta_1 | \boldsymbol{u}, \beta_0, \boldsymbol{y})$ are truncated Normal distributions.

5. Apply the slice sampler to the following simulated data:

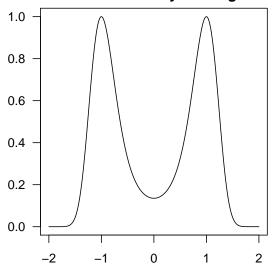
```
n <- 100
beta0 <- 2; beta1 <- 0.5
set.seed( 100 ); x <- abs( rnorm( n ) )
eta <- beta0 + beta1 * x ; mu <- exp( eta ) / ( 1 + exp( eta ) )
y <- rbinom( n, 1, mu )</pre>
```

Exercise 2: Let X be a random variable with unnormalized density

$$p(x \mid \sigma) \propto \exp\left\{-\sigma(x^2 - 1)^2\right\}.$$

The density of X is bimodal as can be seen from the following figure:

Unnormalized density with sigma = 2



- 1. Implement a random walk Metropolis–Hastings sampler based on Normal $\left(0,\sigma^2\right)$ noise.
- 2. Implement a random walk Metropolis–Hastings sampler that runs 4 chains in parallel with different values of σ . That is, the first Markov Chain has the target $p_1(x \mid \sigma_1)$, the second Markov chain has the target $p_2(x \mid \sigma_2)$ and so forth. In each iteration, accept a swap between the states x_i and x_j of two randomly chosen chains i and j with probability

$$\alpha = \min \left\{ 1, \frac{p_i(x_j \mid \sigma_i)p_j(x_i \mid \sigma_j)}{p_i(x_i \mid \sigma_i)p_j(x_j \mid \sigma_j)} \right\}.$$

3. Run both methods for $\sigma = 1, 2, 4, 8$ and inspect the histograms for $\sigma = 8$ to see if both methods can approximate the bivariate distribution.