University of Helsinki

Department of Mathematics and Statistics

Computational statistics 1 — exercise set 3

Exercise 1: Let the discrete random variable X be described by a probability mass function $p_X(x) = \Pr(X = x)$. The current state of a Metropolis–Hastings Markov chain is x_t , which is generated from the same distribution as X. Demonstrate that the next state x_{t+1} will also be drawn from the same distribution as X.

Exercise 2 (chapter 7.4): Let the random variable X follow a Laplace distribution with location $\mu = 0$ and scale parameter $\sigma = 2$. The density of the Laplace distribution is

$$f_X(x) = \frac{1}{2\sigma} \exp\left\{-\frac{|x-\mu|}{\sigma}\right\} \qquad \sigma > 0.$$

- 1. Implement an independent Metropolis–Hastings sampler with a Normal $(0, \sigma_1^2)$ proposal distribution.
- 2. Implement a random walk Metropolis–Hastings sampler based on Normal $(0, \sigma_2^2)$ noise.
- 3. Compare the performance of both samplers in terms of $\mathbb{E}[X]$ and $\mathbb{V}[X]$ for various values of σ_1^2 and σ_2^2 . What value of σ_2^2 is required to achieve an acceptance rate of about 40% in case of the random walk Metropolis–Hastings sampler?

Exercise 3 (chapter 7.4): Let $\{Y_i\}_{i=1}^3$ be independent and identically distributed random variables that follow a Cauchy distribution with location μ and scale parameter $\sigma = 1$. The density of the Cauchy distribution is

$$f_Y(y) = \frac{1}{\pi} \left[\frac{\sigma}{\sigma^2 + (y - \mu)^2} \right] \qquad \sigma > 0.$$

The prior density of the location parameter is $p(\mu) \propto \exp\{-\mu^2/100\}$.

- 1. Show that the posterior density has three modes when $Y_1 = 0, Y_2 = 5$ and $Y_3 = 9$.
- 2. Implement a random walk Metropolis–Hastings sampler based on Cauchy $(0, \sigma_1^2)$ and Normal $(0, \sigma_2^2)$ noise.
- 3. Compare the performance of both samplers in terms of $\mathbb{E}[\mu \mid y_1, y_2, y_2]$ and monitor convergence using trace plots.

Exercise 4: Let X and Y be discrete random variables with support $\{x_1, \ldots, x_n\}$ and $\{y_1, \ldots, y_m\}$. Denote the joint probability mass function of X and Y by $p_{X,Y}(x,y) = \Pr(X = x, Y = y)$. Using a Gibbs sampler, assume that convergence to the distribution of (X,Y) has occurred. Demonstrate that the next state (x_{t+1}, y_{t+1}) will also be drawn from the same distribution as (X,Y).

Exercise 5 (chapter 7.5): Let the vector $\boldsymbol{X} = [X_1, X_2]^T$ follow a bivariate Normal distribution with zero mean vector and covariance matrix $\begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$ with $|\rho| < 1$.

- 1. Implement Monte Carlo simulation and Gibbs sampling to compute marginal expectations and variances.
- 2. Use $\rho = 0$ and generate 500 samples. Compare both methods in terms of bias.
- 3. Use $\rho = 0.5, 0.9, 0.99, 0.999$ and generate again 500 samples. Create trace plots and explain how the correlation affects Gibbs sampling.
- 4. Repeat 2. and 3. by generating 10 000 samples. Explain how Gibbs sampling improves in terms of bias when generating more samples.

Exercise 6 (chapter 7.5): Let $\{y\}_{i=1}^n$ be observations from a counting process where

$$y_i \mid \mu_1, \mu_2, \lambda \sim \begin{cases} \text{Poisson}(\mu_1) & \text{if } i \leq \lambda \\ \text{Poisson}(\mu_2) & \text{if } i > \lambda \end{cases}$$

and λ denotes a changepoint. Let the priors be

$$\mu_1 \sim \text{Gamma}(\alpha_1, \beta_1)$$

 $\mu_2 \sim \text{Gamma}(\alpha_2, \beta_2)$
 $\lambda \sim \text{Uniform}(1, 2, \dots, n)$

- 1. Find the likelihood and joint posterior density for the changepoint model.
- 2. Find all full conditional densities to implement a Gibb sampler.
- 3. Use the Gibbs sampler and the following data to perform changepoint detection:

$$4,4,3,1,3,2,1,0,11,11,12,4,4,7,9,6,9,12,13,15,12,10,10,6,6,7,12,11,\\15,5,11,8,11,7,11,12,14,12,8,11,9,10,6,14,14,8,4,7,10,3,14,10,17,7,\\16,9,12,11,7,11,5,11,13,9,7,9,7,11,12,13,6,9,10,13,8,18,6,16,8,4,16,\\8,9,5,7,9,10,11,13,12,9,11,7,9,6,7,6,11,8,5$$

Exercise 7 (chapter 7.8): Let $\{X_i\}_{i=1}^n$ be correlated random variables with $\mathbb{V}[X_i] = \sigma^2$ for all $i = 1, \ldots n$ and $\text{Cov}[X_i, X_{i+k}] = \sigma_k$ for all i, k. Consider the sample mean $\bar{X} = n^{-1} \sum_{i=1}^n X_i$ and find its variance $\mathbb{V}[\bar{X}]$.