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Exercise 1 (chapter 3.5): The accept-reject method is used to simulate from a distribution Fx (x) with
unnormalized density f% (z) by using the proposal density gx (z) and majorizing constant M. However,

the majorizing condition
fx(@) < Mgx(x)

does not hold in some region of the space. Consequently, the accept-reject method does not simulate from
the distribution corresponding to f%(z) but from another distribution. Write down the unnormalized

density for the distribution that is simulated by the accept—reject method.

Exercise 2 (chapter 3.5): Let {y;}.—, be conditionally independent observations from N(yi | 079_1),
where 6 > 0 is the reciprocal of the variance parameter. The prior of 6 is the half-Cauchy distribution.
The density of the half-Cauchy distribution is

2

p(0)

1. Find the normalized likelihood, that is, calculate the likelihood and normalize it so that it becomes

a familiar density.

2. Suppose that n = 1000 and y2 = n~* St y? = 0.96. Draw a histogram from sample of the
posterior which you obtained by using the accept-reject method and normalized likelihood as the

proposal distribution.

3. It would also be feasible to use the prior as the proposal distribution, because the maximum-
likelihood estimate can be found analytically and the half-Cauchy distribution can be simulated
by taking the absolute value of a random number drawn from the ordinary Cauchy distribution.
However, the acceptance probability would be rather low: about 3.5% as compared to 48% from

the method of part 2. Can you explain why?

Exercise 3 (chapter 3.8): Let the random vector X = [Xi, Xo,...,X,]" follow a d-dimensional
multivariate Student’s—¢ distribution Stq(x | pu, X, ) with location parameter p, symmetric and positive
definite d x d scale matrix X and v > 0 degrees of freedom. The density of the multivariate Student’s—¢

distribution is

_ L((v+d)/2) 1 S —(v+d)/2
Ix(@) = VA/27d/2T (1 2)det ()2 + ;(90 —p) X (e —p) .

Suppose that the factorization X = AAT is available. Design an algorithm without using any other
matrix factorizations and in which random numbers are only drawn Gamma and (univariate) standard

normal distributions.

Exercise 4 (chapter 5.4): Instead of the Inverse Gamma distribution, many authors use the scaled
inverse chi-square distribution for a variance parameter o2 of a Normal distribution. See for instance the

book by Gelman et al. with the title ”Bayesian Data Analysis”. The authors define the scaled inverse



chi-square distribution Inv—x? (¢ | v, 08) with scale parameter o3 > 0 and degrees of freedom v > 0 as

YZTV when X ~ x2.

The density of the scaled inverse chi-square distribution is

o2v/2)""? o2v
= B (i)

1. Derive the density of Y from X.

2. If the variance parameter o2 follows a scaled inverse chi-square distribution Inv—y? (02 | o2, V), then
the precision parameter 1) = 1/02 follows a Gamma distribution. What are its (hyper)parameters?

Remember that if X ~ x2 and a > 0, then X/a has a certain Gamma distribution.

Exercise 5 (chapter 5.5): Consider the simple linear regression model, where

p(y|B,7) = MVN, (y| XB,77'1)
p(B,7) = MVN, (B | p, @ *)Gamma( | a,b).
Here X is a known n x p matrix of explanatory variables, 7 > 0 a scalar precision parameter of the error

distribution and 3 a coefficient vector of length p. Note that 8 and 7 are assumed to be independent in

their joint prior distribution.
1. Write down the joint density p(y, 8, 7) including all normalizing constants. Notice that det(cA) =
c"det(A) for a scalar ¢ and n x n matrix A.

2. Derive the full conditional distribution p(3| 7, y) either from first principles or by using the theory
in chapter 5.5.2.

3. Derive the full conditional distribution p(7|B,vy) by finding a useful formula when starting from

first principles or alternatively by extending the theory of chapter 5.4.2 to the present situation.



