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Exercise 1 (chapter 3.4): Let the random variable X follow a Normal distribution with mean µ

and variance σ2. The density gX(x) of the truncated Normal distribution with support on the interval

I = (a, b) and a < b is

gX(x) =
φ
(
x;µ, σ2

)
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)1(a,b)(x) .

Derive the inverse transformation method to simulate from the truncated Normal distribution.

Solution: The cumulative distribution function of the truncated distribution is

GX(x) =

∫ x

−∞
gX(t) dt =

1

Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

) ∫ x

a

φ
(
t;µ, σ2

)
dt =

Φ

(
x− µ
σ

)
− Φ

(
a− µ
σ

)
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

) .

The quantile function is now straightforward to derive

G−1
X (u) = µ+ σΦ−1

{
Φ

(
a− µ
σ

)
+ u

[
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)]}
0 < u < 1 .

The inverse transform method is then

Simulate U ∼ Unif(0, 1)

Set X = µ+ σΦ−1

{
Φ

(
a− µ
σ

)
+ U

[
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)]}
.

Exercise 2 (chapter 3.5): Let p∗(θ | y) be an unnormalized posterior density of a parameter Θ and

g(θ) the density of the proposal distribution in the accept-reject method. The conditional acceptance

probability of a proposed value θ′ is

Pr(accepted | θ′) =
p∗(θ′ | y)

Mg(θ′)
,

where M > 0 is a known majorizing constant such that p∗(θ | y) ≤ Mg(θ) for all θ. Derive the uncondi-

tional acceptance probability. For univariate distributions, this happens to be equal to

Area under p∗(θ | y)

Area under Mg(θ)
.
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Solution: The unconditional acceptance probability is

Pr(accepted) =

∫
Pr(accepted | θ)g(θ) dθ

=

∫
p∗(θ | y)

Mg(θ)
g(θ) dθ

=
1

M

∫
p∗(θ | y) dθ

=
Area under p∗(θ | y)

Area under Mg(θ)
.

Exercise 3 (chapter 3.5): Let fX(x) be the density of a random variable X with support on the

interval I = [a, b]. Consider the special version of the accept-reject method:

1. Generate independently u1 and u2 from standard Uniform distributions.

2. Accept x′ = a+ (b− a)u1 as a sample from the distribution of X if

Mu2 ≤ fX(a+ [b− a]u1) ,

where M = max
a≤x≤b

fX(x).

Derive the unconditional acceptance probability and demonstrate why x′ is a sample from the distribution

of X with cumulative distribution function

FX(x) =

∫ x

a

fX(t) dt .

Solution: The unconditional acceptance probability is

Pr(accepted) =

∫ 1

0

Pr(accepted |u1)g(u1) du1

=

∫ 1

0

fX(a+ [b− a]u1)

M
du1

=
1

M

∫ b

a

fX(x)
1

b− a
dx

=
1

M(b− a)
,

where the second line used the change-of-variables x = a+(b− a)u1. The probability Pr(X ≤ x | accepted)
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is equal to FX(x), because

Pr(X ≤ x | accepted) =
Pr(X ≤ x ∩ accepted)

Pr(accepted)

= M(b− a)Pr

(
a+ (b− a)U1 ≤ x ∩ U2 ≤

fX(a+ [b− a]u1)

M

)
= M(b− a)Pr

(
U1 ≤

x− a
b− a

∩ U2 ≤
fX(a+ [b− a]u1)

M

)

= M(b− a)

∫ (x−a)/(b−a)

0

du1

∫ fX(a+[b−a]u1)/M

0

du2

= (b− a)

∫ (x−a)/(b−a)

0

fX(a+ [b− a]u1) du1

= (b− a)

∫ x

a

fX(t)
1

b− a
dt

= FX(x) .

Exercise 4 (chapter 3.5): Let the random variable X and Y be independent and follow Uniform

distributions on the interval I = (−0.5, 0.5). The density of the random variable W = X + Y is known

as the triangular density

fW (w) = 1− |w| , |w| < 1 .

with support on the interval I = (−1, 1). Use the special accept-reject method to simulate from the

distribution of W .

Solution:

target <- function( w ) { 1 - abs( w ) }

a <- -1; b <- 1 ; nSamples <- 10000 ; nProposed <- 0

w <- numeric( nSamples ); ii <- 0

while( ii < nSamples ) {

nProposed <- nProposed + 1

x <- a + ( b - a ) * runif( 1 )

if( runif( 1 ) < target( x ) ) {

w[ ii <- ii + 1 ] <- x

}

}

# Estimated acceptance probability: 0.4987282

# Theoretical acceptance probability: 0.5
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Exercise 5 (chapter 3.5):

1. Let the random variable X follow a standard Normal distribution. The density of the standard

Normal distribution is

fX(x) =
1√
2π

exp

{
−x

2

2

}
.

Determine the value of the majorizing constant M in the accept-reject method using a standard

Cauchy distribution as the proposal distribution. The density of the standard Cauchy distribution

is

fX(x) =
1

π(1 + x2)
.

2. Demonstrate that it is not possible to simulate from the standard Cauchy distribution using the

accept-reject method with a standard Normal proposal distribution.

Solution: The accept-reject method requires

M ≥ fX(x)

gX(x)
=
π
(
1 + x2

)
√

2π
exp{−x2/2} = h(x) .

The least upper bound of h(x) is

d log h(x)

dx
= −x+

2x

1 + x2

!
= 0⇒ x = 1

M ≥ h(1) =

√
2π

e
.

Using a standard Normal proposal distribution to simulate from the standard Cauchy distribution, re-

quires

h(x) =

√
2π

π(1 + x2)
exp
{
x2/2

}
≤M .

However, an exponential function grows faster than a polynomial function as x→∞ so that there is no

least upper bound M for any x.
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M <- sqrt( 2 * pi / exp( 1 ) )

nSamples <- 10000 ; nProposed <- 0

x <- numeric( nSamples ); ii <- 0

while( ii < nSamples ) {

nProposed <- nProposed + 1

xProposed <- rcauchy( 1 )

if( runif( 1 ) < dnorm( xProposed ) / M / dcauchy( xProposed ) ) {

x[ ii <- ii + 1 ] <- xProposed

}

}

# Estimated acceptance probability: 0.6625588

# Theoretical acceptance probability: 0.6577446
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Exercise 6 (chapter 3.5):

1. Suppose that it is possible to compute the maximum likelihood estimate θ̂MLE of a parameter Θ,

that is,

θ̂MLE ⊆
{

argmax
θ∈Θ

p(y | θ)
}
.

Show that the prior of Θ can be used as the proposal distribution in the accept-reject method to

simulate from the posterior with unnormalized density

p∗(θ | y) = p(y | θ)p(θ) .

Derive the acceptance condition of the accept-reject method.

2. Suppose that the likelihood p(y | θ) can be normalized to yield a so-called normalized likelihood. Let

the prior density p(θ) be bounded and assume that direct simulation from the normalized likelihood

is feasible. Show that the normalized likelihood of Θ can be used as the proposal distribution in

the accept-reject method to simulate from the posterior. Derive again the acceptance condition of

the accept-reject method.
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Solution: The accept-reject method requires

h(θ) =
p(y | θ)p(θ)

p(θ)
≤ p(y | θ̂MLE) ≤M .

The acceptance condition with M = p(y | θ̂MLE) is therefore

U ≤ p(y | θ)p(θ)
Mp(θ)

=
p(y | θ)

p(y | θ̂MLE)

yielding the following algorithm

Simulate θ ∼ p(θ) and U ∼ Unif(0, 1)

Accept θ if U ≤ p(y | θ)
p(y | θ̂MLE)

.

If the prior density p(θ) is bounded, then

h(θ) =
p∗(y | θ)p(θ)
p∗(y | θ)

≤ max p(θ) ≤M ,

where p∗(y | θ) is the normalized likelihood. The acceptance condition with M = max p(θ) is therefore

U ≤ p∗(y | θ)p(θ)
Mp∗(y | θ)

=
p(θ)

max p(θ)

yielding the following algorithm

Simulate θ ∼ p∗(y | θ) and U ∼ Unif(0, 1)

Accept θ if U ≤ p(θ)

max p(θ)
.
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