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Exercise 1 (chapter 1.4): Conditionally on © = 6, {Y;};"_ | are independent and identically distributed
random variables that follow an exponential distribution with rate 8. The density of the exponential

distribution is

p(y|0) =Oexp{-by}, y>0.
Let the prior on © be a Gamma distribution with shape o = 1 and rate 8 = 1. There are two datasets:
Ln=5andy=n"'>" v =025

2. n =100 and §y = 0.25

For both datasets, plot the prior, likelihood, the product of prior and likelihood as well as the posterior
density (which happens to be a Gamma density).

Solution: The density of the Gamma prior on O is

Ba

(o) 6>~ exp{—36} 0,0,8>0.

p(0) =

The likelihood of © is

p(y|0) = H 0 exp{—0y;} = 6" exp{Ony} .

i=1

Combining the prior density and likelihood, the posterior density of © is proportional to
p(0y) o< p(y |0)p(8) = 0" exp{Ong}0° " exp{—B6} = 0T exp{—0(8 + ny)} ,

which represents the kernel of a Gamma(6 | a + n, 8 + ng) distribution.

Exercise 2 (chapter 1.4): For the statistical model from Exercise 1, find a closed form formula for the

predictive density

p(y*\y)=/@p(y*,9|y)d9=/®p(y*|9)p(9\y)d9

of a new observation y*. Evaluate and plot the predictive density for the first dataset from Exercise 1 by

setting up a grid for the y* values.



Prior Prior

1.0 A 1.0 H
0.8 0.8 -
0.6 0.6 -
0.4 A 04 A
0.2 o 0.2 +
0.0 - 0.0 —

0 2 4 6 8 10 0 2 4 6 8 10
Likelihood (n1) Likelihood (n2)
7 6e+16
6 5e+16
5 -
4e+16
7 3e+16
+16
3 e
24 2e+16
1 - le+16
0 0e+00
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Likelihood (n1) * prior Likelihood (n2) * prior
1.2e+15
0.3 1.0e+15 |
8.0e+14 —
02 6.0e+14
01 - 4.0e+14
2.0e+14
0.0 0.0e+00
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
Posterior (n1) Posterior (n2)
044 1.0 -
0.3 0.8
0.6
0.2
0.4
01 0.2 -
0.0 0.0
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10

Solution: The predictive density is

(B+ny)**"

T(at 1) 62T exp{—0(3 + ny)} dd

p(y*ly) = /OOO 0 exp{—0y"*}

_ B [ o -
_W/o 0o exp{—0(3 + y* +ng)} o

B+ny)*™  T(a+n+1)
Ca+n) (B4 y* +ng)* "t

_ (a+n)(B+ny*T"
(B+y* +ng)

where the integral in the second line is the inverse of the normalizing constant of a Gamma distribution

and the last line used the following property of the Gamma function: I'(x 4+ 1) = «I'(x).

Exercise 3 (chapter 2.7): The joint conditional distribution of Y* and © factorizes as

p(y*,01y) =py*0)p(0]y),

because the random variables Y and Y* are conditionally independent given © = 6. Derive this results

from the multiplication rule for conditional distributions.
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Solution: Using the multiplication rule and conditional independence of Y and Y™ given © = 6 gives

p(y",0ly) =py* |y, 0)p0|y) =ply™ |0)p(0|y)-

Exercise 4 (chapter 2.10): Let the random variable X follow a Gamma distribution with shape o > 0
and rate 8 > 0. There is only information about ¥ = g(X) = X~!. The distribution of YV is the

Inverse-Gamma distribution with parameters o and .

1. Find the density of Y using a change-of-variables:

fy(y) = fx(x) de = fx(h(y))|l (y)| under the bijection y = g(z) < x = h(y)

dy

2. Find a formula for the mode (i.e. the maximum point) of the density of Y’

3. Find the expectation E[Y] assuming « > 1 using E[X*I]

Solution: The density of YV is

_ dz| g 1\ B\l B o
wo=nolgl-rm () el em e
The mode of fy(y) is
dlogfy(y) _ _a+1l B 1 __B
dy B Y +y2_0:>y_a+1'

The second derivative is

dlogfy(y) _a+1 28

dy? oy P



which is negative at y = 8/(« 4+ 1) showing that it is a maximum point. The expectation of Y is

EY]=E[X'] = /00O irﬂ(:)ma_lexp{—ﬁx} dz

R N T
71“(0()/0 D" exp{— Bz} dz

. pe F(a—l)_ 8
_F(a) a1 =1 a>1.

Exercise 5 (chapter 2.10): Let the random variables {X,-}f:1 follow independently Gamma distribu-

tions with shape a1, as, a3 > 0 and rate 81 = B2 = 3 = 1. Using a multivariate change-of-variables

X1 X2

N S U Yy— 22 S =X+ X+ X,
X1+ Xo+ X3 PTX A Xo + X5 ! ? °

Y

find the joint density of Y7,Y> and S. Find also the joint density of Y7 and Y> by integrating out S (which
happens to be a Dirichlet distribution).

Solution: The change-of-variables gives
X, =%Ss Xo=Y58 X;5=51-Y1-Ys).

The determinant of the Jacobian matrix is required for the change-of-variable:
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The joint density of Y7,Y5 and S is then
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The marginal density of Y7 and Y5 is

o0
thYz(yl’yQ) :/ fY17Y27S(y1ay275) ds
0

alfl agfl

= (4] Y2 (1 — Y1 — y2)a3_1 /00 gtoztas—l,—s ¢
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(1—y1 —y2) yl,y2>0and 0 <y; +y2 <1,

where the integral in the second line is the inverse of the normalizing constant of a Gamma distribution.

The marginal density is that of a Dirichlet distribution with parameters a;, s and ag.

Exercise 6 (chapter 3.2): Let the random variable X follow a Pareto distribution with shape a > 0
and scale x,, > 0. The density of the Pareto distribution is

(e}
Ty,

fX(x):xa+17 T2 Ty

Derive the inverse transformation method to simulate from the Pareto distribution (there is no function

in the standard packages of R).

Solution: The cumulative distribution function of X is

FX(m)zl—(x—m)a R

x
The quantile function Fi'(u) is now straightforward to derive

_ T

The inverse transform method is then
Simulate U ~ Unif(0, 1)
T

A sample of 10000 random numbers from the Pareto distribution can be generated in R.
Exercise 7 (chapter 3.4): Let fx(z) be the density of a continuously distributed random variable X.
The cumulative distribution Fx (z) and quantile function Fy'(u) with u € (0,1) are known. Derive the

inverse transformation method when the distribution of X is truncated to the interval I = (a,b) with

a < b. The density of the truncated distribution is proportional to the unnormalized density

9x () < fx(2)1(ap) ().

Start by determining the normalizing constant k such that gx (z) = g% (x)/k is a density and then derive



alpha <- 3

xm <- 1

x <- xm/runif (10000) " (1/alpha)

par(mar = c(3, 3, 2, 2), las = 1)

hist(x, breaks = "Scott", probability = TRUE, xlim = c(0, 5), xlab = "", ylab = "")

Histogram of x
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the cumulative distribution G x () and quantile function G§" (u) of the truncated distribution.

Solution: The normalizing constant of gx(x) is

k k

—00 —

:/Do gX(x)deE/OO gﬁ((x)dx:]i/bfx(x)dm:w:k:FX(b)—FX(a).

For a < x < b, the cumulative distribution function is

Gx(x) =/;gx(t)dt= M/jf)f(t)dt: m

The quantile function is now straightforward to derive
Gy (u) = Fx'{Fx(a) + u[Fx(b) — Fx(a)]} O<u<l.
The inverse transform method is then

Simulate U ~ Unif(0,1)
Set X = Fy'{Fx(a) + U[Fx(b) — Fx(a)]}.



