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Exercise 1 (chapter 1.4): Conditionally on Θ = θ, {Yi}ni=1 are independent and identically distributed

random variables that follow an exponential distribution with rate θ. The density of the exponential

distribution is

p(y | θ) = θ exp{−θy} , y > 0 .

Let the prior on Θ be a Gamma distribution with shape α = 1 and rate β = 1. There are two datasets:

1. n = 5 and ȳ = n−1
∑n
i=1 yi = 0.25

2. n = 100 and ȳ = 0.25

For both datasets, plot the prior, likelihood, the product of prior and likelihood as well as the posterior

density (which happens to be a Gamma density).

Solution: The density of the Gamma prior on Θ is

p(θ) =
βα

Γ(α)
θα−1 exp{−βθ} θ, α, β > 0 .

The likelihood of Θ is

p(y | θ) =

n∏
i=1

θ exp{−θyi} = θn exp{θnȳ} .

Combining the prior density and likelihood, the posterior density of Θ is proportional to

p(θ | y) ∝ p(y | θ)p(θ) = θn exp{θnȳ}θα−1 exp{−βθ} = θα+n−1 exp{−θ(β + nȳ)} ,

which represents the kernel of a Gamma(θ |α+ n, β + nȳ) distribution.

Exercise 2 (chapter 1.4): For the statistical model from Exercise 1, find a closed form formula for the

predictive density

p(y∗ | y) =

∫
Θ

p(y∗, θ | y) dθ =

∫
Θ

p(y∗ | θ)p(θ | y) dθ

of a new observation y∗. Evaluate and plot the predictive density for the first dataset from Exercise 1 by

setting up a grid for the y∗ values.
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Solution: The predictive density is

p(y∗ | y) =

∫ ∞
0

θ exp{−θy∗} (β + nȳ)
α+n

Γ(α+ n)
θα+n−1 exp{−θ(β + nȳ)} dθ

=
(β + nȳ)

α+n

Γ(α+ n)

∫ ∞
0

θα+n exp{−θ(β + y∗ + nȳ)} dθ

=
(β + nȳ)

α+n

Γ(α+ n)

Γ(α+ n+ 1)

(β + y∗ + nȳ)
α+n+1

=
(α+ n)(β + nȳ)

α+n

(β + y∗ + nȳ)
α+n+1 ,

where the integral in the second line is the inverse of the normalizing constant of a Gamma distribution

and the last line used the following property of the Gamma function: Γ(x+ 1) = xΓ(x).

Exercise 3 (chapter 2.7): The joint conditional distribution of Y ∗ and Θ factorizes as

p(y∗, θ | y) = p(y∗ | θ)p(θ | y) ,

because the random variables Y and Y ∗ are conditionally independent given Θ = θ. Derive this results

from the multiplication rule for conditional distributions.
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Solution: Using the multiplication rule and conditional independence of Y and Y ∗ given Θ = θ gives

p(y∗, θ | y) = p(y∗ | y, θ)p(θ | y) = p(y∗ | θ)p(θ | y) .

Exercise 4 (chapter 2.10): Let the random variable X follow a Gamma distribution with shape α > 0

and rate β > 0. There is only information about Y = g(X) = X−1. The distribution of Y is the

Inverse-Gamma distribution with parameters α and β.

1. Find the density of Y using a change-of-variables:

fY (y) = fX(x)

∣∣∣∣dxdy

∣∣∣∣ = fX(h(y))|h′(y)| under the bijection y = g(x)⇔ x = h(y)

2. Find a formula for the mode (i.e. the maximum point) of the density of Y

3. Find the expectation E[Y ] assuming α > 1 using E
[
X−1

]
Solution: The density of Y is

fY (y) = fX(x)

∣∣∣∣dxdy

∣∣∣∣ =
βα

Γ(α)

(
1

y

)α−1

exp

{
−β
y

}
1

y2
=

βα

Γ(α)
y−α−1 exp{−β/y} y > 0 .

The mode of fY (y) is

d log fY (y)

dy
= −α+ 1

y
+
β

y2

!
= 0⇒ y =

β

α+ 1
.

The second derivative is

d2 log fY (y)

dy2
=
α+ 1

y2
− 2β

y3
,
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which is negative at y = β/(α+ 1) showing that it is a maximum point. The expectation of Y is

E[Y ] = E
[
X−1

]
=

∫ ∞
0

1

x

βα

Γ(α)
xα−1 exp{−βx}dx

=
βα

Γ(α)

∫ ∞
0

x(α−1)−1 exp{−βx}dx

=
βα

Γ(α)

Γ(α− 1)

βα−1
=

β

α− 1
α > 1 .

Exercise 5 (chapter 2.10): Let the random variables {Xi}3i=1 follow independently Gamma distribu-

tions with shape α1, α2, α3 > 0 and rate β1 = β2 = β3 = 1. Using a multivariate change-of-variables

Y1 =
X1

X1 +X2 +X3
Y2 =

X2

X1 +X2 +X3
S = X1 +X2 +X3 ,

find the joint density of Y1, Y2 and S. Find also the joint density of Y1 and Y2 by integrating out S (which

happens to be a Dirichlet distribution).

Solution: The change-of-variables gives

X1 = Y1S X2 = Y2S X3 = S(1− Y1 − Y2) .

The determinant of the Jacobian matrix is required for the change-of-variable:

∣∣∣∣∂x1, x2, x3

∂y1, y2, s

∣∣∣∣ = det


∂x1

∂y1
∂x1

∂y2
∂x1

∂s

∂x2

∂y1
∂x2

∂y2
∂x2

∂s

∂x3

∂y1
∂x3

∂y2
∂x3

∂s

 = det


s 0 y1

0 s y2

−s −s 1− y1 − y2

 = s2 .

The joint density of Y1, Y2 and S is then

fY1,Y2,S(y1, y2, s) = fX1,X2,X3(x1, x2, x3)

∣∣∣∣∂x1, x2, x3

∂y1, y2, s

∣∣∣∣
=

1

Γ(α1)
(y1s)

α1−1
e−y1s×

1

Γ(α2)
(y2s)

α2−1
e−y2s×

1

Γ(α3)
(s[1− y1 − y2])

α3−1
e−(1−y1−y2)s×

s2

=
yα1−1

1 yα2−1
2 (1− y1 − y2)

α3−1

Γ(α1)Γ(α2)Γ(α3)
sα1+α2+α3−1e−s .
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The marginal density of Y1 and Y2 is

fY1,Y2
(y1, y2) =

∫ ∞
0

fY1,Y2,S(y1, y2, s) ds

=
yα1−1

1 yα2−1
2 (1− y1 − y2)

α3−1

Γ(α1)Γ(α2)Γ(α3)

∫ ∞
0

sα1+α2+α3−1e−s ds

=
Γ(α1 + α2 + α3)

Γ(α1)Γ(α2)Γ(α3)
yα1−1

1 yα2−1
2 (1− y1 − y2)

α3−1
y1, y2 > 0 and 0 < y1 + y2 < 1 ,

where the integral in the second line is the inverse of the normalizing constant of a Gamma distribution.

The marginal density is that of a Dirichlet distribution with parameters α1, α2 and α3.

Exercise 6 (chapter 3.2): Let the random variable X follow a Pareto distribution with shape α > 0

and scale xm > 0. The density of the Pareto distribution is

fX(x) =
αxαm
xα+1

, x ≥ xm .

Derive the inverse transformation method to simulate from the Pareto distribution (there is no function

in the standard packages of R).

Solution: The cumulative distribution function of X is

FX(x) = 1−
(xm
x

)α
x ≥ xm .

The quantile function F−1
X (u) is now straightforward to derive

F−1
X (u) =

xm

(1− u)
1/α

0 < u < 1 .

The inverse transform method is then

Simulate U ∼ Unif(0, 1)

Set X =
xm
U1/α

.

A sample of 10000 random numbers from the Pareto distribution can be generated in R.

Exercise 7 (chapter 3.4): Let fX(x) be the density of a continuously distributed random variable X.

The cumulative distribution FX(x) and quantile function F−1
X (u) with u ∈ (0, 1) are known. Derive the

inverse transformation method when the distribution of X is truncated to the interval I = (a, b) with

a < b. The density of the truncated distribution is proportional to the unnormalized density

g∗X(x) ∝ fX(x)1(a,b)(x) .

Start by determining the normalizing constant k such that gX(x) = g∗X(x)/k is a density and then derive
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alpha <- 3

xm <- 1

x <- xm/runif(10000)^(1/alpha)

par(mar = c(3, 3, 2, 2), las = 1)

hist(x, breaks = "Scott", probability = TRUE, xlim = c(0, 5), xlab = "", ylab = "")
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the cumulative distribution GX(x) and quantile function G−1
X (u) of the truncated distribution.

Solution: The normalizing constant of gX(x) is

1 =

∫ ∞
−∞

gX(x) dx =
1

k

∫ ∞
−∞

g∗X(x) dx =
1

k

∫ b

a

fX(x) dx =
FX(b)− FX(a)

k
⇒ k = FX(b)− FX(a) .

For a < x < b, the cumulative distribution function is

GX(x) =

∫ x

a

gX(t) dt =
1

FX(b)− FX(a)

∫ x

a

fX(t) dt =
FX(x)− FX(a)

FX(b)− FX(a)
.

The quantile function is now straightforward to derive

G−1
X (u) = F−1

X {FX(a) + u[FX(b)− FX(a)]} 0 < u < 1 .

The inverse transform method is then

Simulate U ∼ Unif(0, 1)

Set X = F−1
X {FX(a) + U [FX(b)− FX(a)]} .
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