
Integral equations
Solutions to the fourth problem set

1. Define

xa+ =

{
xa, x > 0
0, x 6 0.

Determine those values a ∈ R for which xa+ has a weak derivative in the sense
that we defined in the lectures.

Solution. Where a function is classically differentiable, weak derivative exists
and coincides with the classical derivative. Thus, xa+ is weakly differentiable in
R− with weak derivative 0, and weakly differentiable in R+ with weak derivative
axa−1. Thus, only the weak differentiability near zero needs to be considered,
and the weak derivative in R, if it exists, can only be axa−1

+ .
Weak differentiability requires local integrability. For a 6= −1, we have

1∫
ε

xa dx =
xa+1

a+ 1

]x=1

ε

=
1

a+ 1
− εa+1

a+ 1
,

and the limit ε −→ 0+ exists and is finite if a > −1, and the integral
∫ 1

ε
tends

to infinity when a < −1. When a = −1, we have

1∫
ε

xa dx = log x
]x=1

ε
= − log ε,

and this tends to infinity as as ε −→ 0+. Thus, the function xa+ is locally
integrable exactly when a > −1.

The weak derivative needs to be locally integrable as well, and, by the above
considerations, the function axa−1

+ is locally integrable if and only if a = 0 or

a− 1 > −1. In other words, axa−1
+ is locally integrable exactly when a > 0.

Thus, xa+ can be weakly differentiable only when a > 0, so suppose then,
that a > 0. The only remaining requirement for weak differentiability is that
we need to have

∞∫
0

xa ϕ′(x) dx = −
∞∫

0

axa−1 ϕ(x) dx

for all test functions ϕ ∈ C∞c (R). This requirement simplifies to

∞∫
0

(
xa ϕ(x)

)′
dx = 0.

As ϕ is compactly supported, this holds exactly when εa ϕ(ε) tends to zero as
ε −→ 0+. For a = 0 the limit is ϕ(0) and this might not vanish. For a > 0, the
limit is exists and vanishes, and we conclude that xa+ is weakly differentiable

exactly when a > 0, and the weak derivative is then axa−1
+ .

For the next three exercises we assume that H is a real Hilbert space.
Especially, the inner product 〈·, ·〉 is an R-bilinear map on H ×H.
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2. Assume that B : H ×H −→ R is a real bilinear map for which there exist
constants M > 0 and m > 0 such that

|B(u, v)| 6M ‖u‖ ‖v‖ , u, v ∈ H,

and
m ‖u‖2 6 B(u, u), u ∈ H.

Prove that there is a unique bounded linear operator A : H −→ H such that

B(u, v) = 〈Au, v〉 , u, v ∈ H.

Solution. For any given u ∈ H, the mapping B(u, ·) is a bounded linear
functional of H, and so, by Riesz’s representation theorem, there exists a unique
w ∈ H such that

B(u, v) = 〈w, v〉

for all v ∈ H. Since w is unique, we may define a mapping A : H −→ H by
setting Au = w, and this mapping satisfies B(u, v) = 〈Au, v〉 for all u, v ∈ H,
and it is the unique mapping with this property.

Let α, α′ ∈ R and u, u′ ∈ H. Since

〈A(αu+ α′u′), v〉 = B(αu+ α′u′, v) = αB(u, v) + α′B(u′, v)

= α 〈Au, v〉+ α′ 〈Au′, v〉 = 〈αAu+ α′Au′, v〉

for all v ∈ H, the mapping A is linear. Finally, by Riesz’s representation theorem
and the upper bound for B(·, ·), we have ‖Au‖ = ‖w‖ 6 M ‖u‖, and so A is
bounded.

3. Prove that the operator A constructed above is a bijection.

Solution. Given a vector u 6= 0 in H, we have

m ‖u‖2 6 B(u, u) = 〈Au, u〉 6 ‖Au‖ ‖u‖ ,

so that ‖Au‖ > m ‖u‖ > 0. Thus Au 6= 0 and we conclude that A is injective.
If v ⊥ ImA, then

m ‖v‖2 6 B(v, v) = 〈Av, v〉 = 0,

and we must have v = 0. Thus the image of A is dense in H.
Let w ∈ ImA. Then there exists a sequence 〈wn〉∞n=1 of vectors in ImA

converging to w. For each n ∈ Z+, there exists a unique vector un ∈ H with
Aun = wn. By the lower bound for B, we have, for all positive integers k and `,

m ‖uk − u`‖2 6 B(uk − u`, uk − u`)
= 〈A(uk − u`), uk − u`)〉 6 ‖A(uk − u`)‖ ‖uk − u`‖ .

This implies that ‖uk − u`‖ 6 1
m ‖wk − w`‖, and since 〈wn〉∞n=1 is a Cauchy

sequence, 〈un〉∞n=1 is a Cauchy sequence as well, converging to some u ∈ H.
Finally, by the continuity of A, Au can only be w, and A is surjective.
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4. Prove now the Lax–Milgram theorem: If B is as above and λ : H −→ B is a
bounded linear functional, then there exists a unique element u ∈ H such that
for all v ∈ H we have

B(u, v) = λ(v).

Solution. Uniqueness. If u and u′ are vectors in H such that

B(u, v) = λ(v) and B(u′, v) = λ(v)

for all v ∈ H, then

m ‖u− u′‖2 6 B(u− u′, u− u′) = B(u, u− u′)−B(u′, u− u′)
= λ(u− u′)− λ(u− u′) = 0,

so that u = u′.
Existence. By Riesz’s representation theorem, there exists a unique w ∈ H

so that λ(v) = 〈w, v〉 for all v ∈ H. If we choose u = A−1w, we have

B(u, v) = 〈Au, v〉 =
〈
AA−1w, v

〉
= 〈w, v〉 = λ(v)

for all v ∈ H.

Let now Ω ⊂ Rn be open and bounded. Consider the linear partial differen-
tial operator

L = −∆ +

n∑
k=1

bk(x)
∂

∂xk
+ c(x)

where the real valued functions bk and c are continuous in Ω.

5. Define the bilinear form

B(u, v) =

∫
Ω

〈∇u,∇v〉+

∫
Ω

n∑
k=1

bk
∂u

∂xk
v +

∫
Ω

cuv

on H1
0 (Ω)×H1

0 (Ω). Prove that B satisfies the so-called energy estimates: there
exist positive constants M , m and C such that

|B(u, v)| 6M ‖u‖H1
0 (Ω) ‖v‖H1

0 (Ω)

and
m ‖u‖2H1

0 (Ω) 6 B(u, u) + C ‖u‖2L2(Ω)

for all u, v ∈ H1
0 (Ω).

Solution. For simplicity, we write ‖·‖ for the L2(Ω)-norm, and ‖∇u‖2 for∑n
k=1 ‖∂ku‖

2
. By the triangle inequality,

|B(u, v)| 6 ‖∇u‖ ‖∇v‖+ b ‖∇u‖ ‖v‖+ b′ ‖u‖ ‖v‖ ,

where b = max16k6n ‖bk‖L∞(Ω) and b′ = ‖c‖L∞(Ω), and so

|B(u, v)| 6 (1 + b+ b′) (‖u‖+ ‖∇u‖) (‖v‖+ ‖∇v‖) .
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By the Cauchy–Schwarz inequality in R2, we can estimate

‖u‖+ ‖∇u‖ 6
√

2

√
‖u‖2 + ‖∇u‖2 =

√
2 ‖u‖H1

0 (Ω) ,

and combining this with the previous estimate gives

|B(u, v)| 6 2 (1 + b+ b′) ‖u‖H1
0 (Ω) ‖v‖H1

0 (Ω) ,

which is an upper bound of the desired shape.
Again, by the triangle inequality, we have

B(u, u) =

∫
Ω

|∇u|2 +

n∑
k=1

∫
Ω

bk∂ku · u+

∫
Ω

c |u|2

> ‖∇u‖2 − b ‖∇u‖ ‖u‖ − b′ ‖u‖2 .

The elementary inequality αβ 6 α2+β2

2 , which holds for all α, β ∈ [0,∞[, implies
that

b ‖∇u‖ ‖u‖ = ‖∇u‖ · b ‖u‖ 6 1

2
‖∇u‖2 +

b2

2
‖u‖2 .

Combining this with the lower bound for B(u, u) gives

B(u, u) >
1

2
‖∇u‖2 −

(
b2

2
+ b′

)
‖u‖2 =

1

2
‖u‖2H1

0 (Ω) −
(
b2

2
+ b′ +

1

2

)
‖u‖2 ,

and we are done.

6. Apply the previous exercise to study the weak solvability on H1
0 (Ω) of the

boundary value problem

Lu+ µu = f in Ω, u|∂Ω = 0

for a large enough constant µ.

Solution. Here weak solvability means that u ∈ H1
0 (Ω) is such that

B(u, v) + µ

∫
Ω

uv =

∫
Ω

fv

for all v ∈ H1
0 (Ω). We assume that f ∈ L2(Ω). Write B̃(u, v) for the left-hand

side. From the previous exercise, we know that∣∣B̃(u, v)
∣∣ 6 (2 + 2b+ 2b′ + |µ|) ‖u‖H1

0 (Ω) ‖v‖H1
0 (Ω) ,

and if µ > b2

2 + b′ + 1
2 , then

B̃(u, u) >
1

2
‖u‖H1

0 (Ω) +

(
µ− b2

2
− b′ − 1

)
‖u‖2

> min

{
1

2
, µ− b2

2
− b′ − 1

2

}
‖u‖2H1

0 (Ω) .

Also, the mapping λ = v 7−→
∫

Ω
fv is a bounded linear functional of H1

0 (Ω), as

|λ(v)| 6 ‖f‖ ‖v‖ 6 ‖f‖ ‖v‖H1
0 (Ω) .

Thus, by the Lax–Milgram theorem, there is a unique weak solution u ∈ H1
0 (Ω).
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7. Show that the set of Dirichlet eigenvalues of ∆ on Ω ⊂ Rn is invariant under
rotations, reflections and translations of Ω.

Solution. The key point here is that the Laplace operator commutes with the
mappings in question, and more generally with automorphisms of the Euclidean
space (as a geometrical structure). In other words, for such a geometrical map-
ping A : Rn −→ Rn, and for f ∈ C2(Rn),

∆
(
f(A(x))

)
=
(
∆f
)
(A(x)), (∗)

x ∈ Rn. As the group of automorphisms in question is generated by translations
and orthogonal transformations, it is enough to prove (∗) for those two classes
of mappings. For translations (∗) is clearly true, so we may focus on the latter
class.

Let O = [Oij ] ∈ Rn×n be an orthogonal matrix, i.e. OTO = I. In terms of
the components, orthogonality means that

n∑
k=1

OikOjk = δij ,

where δij = 1 when i = j and = 0 otherwise. Given a vector x ∈ Rn, the kth
component (Ox)k of Ox is

(Ox)k =

n∑
j=1

Okjxj .

Now, using the above relations and the chain rule,

∆
(
f(Ox)

)
=

n∑
`=1

∂2

∂x2
`

(
f(Ox)

)
=

n∑
`=1

∂

∂x`

n∑
k=1

∂f

∂xk
(Ox) · ∂(Ox)k

∂x`

=

n∑
`=1

n∑
k=1

n∑
k′=1

∂2f

∂xk′∂xk
(Ox) · ∂(Ox)k′

∂x`
·Ok`

=

n∑
k=1

n∑
k′=1

∂2f

∂xk′∂xk
(Ox)

n∑
`=1

Ok′`Ok` =

n∑
k=1

∂2f

∂x2
k

(Ox) =
(
∆f
)
(Ox).

Now that (∗) has been proved, let u be a Dirichlet eigenfunction of −∆ in
Ω corresponding to an eigenvalue λ. Then

−∆
(
u(A−1x)

)
) = −

(
∆u
)
(A−1·) = λu(A−1·),

so that u(A−1·) is a Dirichlet eigenfunction of −∆ in A[Ω] corresponding to the
eigenvalue λ.

8. Given λ > 0 and Ω ⊂ Rd, let λΩ = {λx|x ∈ Ω}. What can you say about
the Dirichlet eigenvalues of λΩ?
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Solution. Let u ∈ C2
∂(Ω) be a Dirichlet eigenfunction of −∆ in Ω correspond-

ing to an eigenvalue µ. Then u(·/λ) is a function in C2
∂(λΩ) and

−∆
(
u
( ·
λ

))
= − 1

λ2

(
∆u
)( ·
λ

)
=

µ

λ2
u
( ·
λ

)
,

so that u(·/λ) is a Dirichlet eigenfunction of −∆ in λΩ corresponding to the
eigenvalue µ/λ2.

Applying the same argument with the inverse of λ shows, that if µ′ is a
Dirichlet eigenvalue of −∆ in λΩ, then λ2µ′ is a Dirichlet eigenvalue of −∆ in
Ω.

For the next two exercises fix a bounded domain Ω ⊂ Rd, let

C2
∂(Ω) =

{
u ∈ C2(Ω) ∩ C(Ω)

∣∣u|∂Ω = 0
}

and define

λ1 = inf
w∈C2

∂(Ω)

‖∇w‖2L2(Ω)

‖w‖2L2(Ω)

.

9. Assume u ∈ C2
∂(Ω) is such that

λ1 =
‖∇u‖2L2(Ω)

‖u‖2L2(Ω)

,

i.e. we attain the minimum at u. Prove that λ1 is a Dirichlet eigenvalue of −∆
on Ω with eigenvalue u. Hint: Given any v ∈ C2

∂(Ω) study the function

f(ε) =
‖∇(u+ εv)‖2L2(Ω)

‖u+ εv‖2L2(Ω)

,

at zero.

Solution. Again, for simplicity, we denote the L2-norm in Ω by ‖·‖, and the
inner product by 〈·|·〉. Let us first compute the derivative f ′(ε):

f ′(ε) =
d

dε

‖∇u‖2 + 2ε 〈∇u|∇v〉+ ε2 ‖∇v‖2

‖u‖2 + 2ε 〈u|v〉+ ε2 ‖v‖2

=
2 〈∇u|∇v〉+ 2ε ‖∇v‖2

‖u‖2 + 2ε 〈u|v〉+ ε2 ‖v‖2

−
(
‖∇u‖2 + 2ε 〈∇u|∇v〉+ ε2 ‖∇v‖2

)(
2 〈u|v〉+ 2ε ‖v‖2

)(
‖u‖2 + 2ε 〈u|v〉+ ε2 ‖v‖2

)2 .

Since u is a minimum, f(ε) has a minimum at ε = 0, and we must have f ′(0) = 0.
More precisely,

2 〈∇u|∇v〉
‖u‖2

−
(
‖∇u‖2

)(
2 〈u|v〉

)(
‖u‖2

)2 = 0,
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for all v in, say, C∞c (Ω). This simplifies to

〈∇u|∇v〉 =
‖∇u‖2

‖u‖2
〈u|v〉 = λ1 〈u|v〉 .

By Green’s formulae, we have

〈−∆u|v〉 = λ1 〈u|v〉

for all test functions v. Since test functions are dense in L2(Ω), we conclude
that −∆u = λ1u.

10. Prove that λ1 6 λ for all Dirichlet eigenvalues λ of −∆ on Ω.

Solution. If u ∈ C2
∂(Ω) solves −∆u = λu, where λ ∈ R, then

−
∫
Ω

u∆u = λ

∫
Ω

|u|2 .

By Green’s formulae, we have∫
Ω

|∇u|2 = λ

∫
Ω

|u|2 .

Thus, directly by the definition of λ1, we have

λ1 6

∫
Ω
|∇u|2∫

Ω
|u|2

= λ.
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