Integral equations
Solutions to the third problem set

1. Assume that K: H; — H is a compact operator between Hilbert spaces.
Given bounded linear maps A: H — H; and B: Hy — H, where H is again
Hilbert, prove that KA and BK are compact. Also, prove that the sum K+ K5
of two compact operators K1, Ko: Hy — Hs is compact.

Solution. Let X C H be a bounded set. Then A, as a bounded operator,
maps X into some bounded set A[X] C H;. Since K is compact, the image
K[A[X]] is inside some compact set in Hy. Thus (K A)[X] is inside a compact
set in Hs, and K A is therefore compact.

Similarly, given a bounded set Y C H, the compact operator K maps Y into
a set K[Y] which is contained in a compact set Z C H,. Since B is bounded,
it is continuous, and it maps Z into a compact set B[Z]. Thus (BK)[Y] is
contained in the compact set B[Z], and the operator BK is also compact.

Given a bounded set W C Hy, the images K;[W] and K3[W] are contained
in some compact sets W/ C Hy and W"” C H,. The product W/ x W is
compact in Hy X Hy. Since the addition of vectors in Hs is a continuous mapping
Hy x Hy — Hs, the image +[W’ x W"] is compact in Hy. Thus the image
(K1+ K3)[W] of the bounded set W under K7 + K is contained in the compact
set +[W' x W] in Ha, and the operator K + K> is compact.

2. Assume that K,,: Hi — Hs, n = 1,2,..., are compact, and that we have
|[A— K| — 0 as n — oco. Here A € £ (Hy, Hs). Prove that A is compact.

Solution. Let (z,,),-_, be a bounded sequence in Hy. Our goal is to prove
that the sequence (Axm>§=1 contains a subsequence which converges in Hs.
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Since K is compact, the sequence (x,,) -_, contains a subsequence <x,(n)>m:1

for which (K xgyll)ﬂf:l converges in Ho.
In the same vein, the compactness of K guarantees that the sequence

<x$,1l)>$n°:1 has a subsequence (J;Q),Cﬁ:l for which (K xﬁ)ﬁ:l converges in Ho.
We may continue this construction inductively in the same way: For each

N € Z, we have a subsequence (:L‘%V )>;’§:1 for which (K jx%\[ )>T°,f:1 converges in

H, foreach j € {1,2,..., N}, and by picking a suitable subsequence <x§,€v+1)>$§:1
of <x£,1y)>$,‘,j:1, we know that also <KN+1xSTJLV+1)>$§:1 converges in Hy.

Now we shall consider the “diagonal” subsequence (x%n)ﬂf:l of (xm)S0_4.

Given an € € R, we may choose a large N € Z, so that
A - Knll <e,
and then another large integer M € Z, so that

HKN(JJ%”) - 3351”))” <e

for all integers m and n greater than M.



Finally, letting R € R4 be a number sufficiently large so that ||x£,:n)|| <R
for all m € Z, we may estimate
sty — 4t
<A = K)o || + [ K (i) = 2| + || (K = A) 2|
<eR+e+eR,

for all integers m and n greater than M, and so (Axﬂf”)f,?:l is Cauchy and
converges in Hs.

3. Assume that (a,) is a sequence of complex numbers converging to zero.
Consider the linear map

AP — 02 (Xn) —> (anxy) .

Prove that A is compact. Hint: Use the previous exercise with suitable operators
K, having finite dimensional image spaces.

Solution. Define for each n € Z the operator K, : £2 — (2 by
(@Yo y ¥ (@121, A2, . . ., Ty, 0,0,...) .

Now each of the operators K, has a finite-dimensional image and therefore must
be compact. If we can show that [[A — K,,|| — 0 as n — oo, then the result
of the previous exercise tells us that A is compact.

Let us be given a number ¢ € Ry . Then there exists a number N € Z, such
that |a,| < € for all integers n > N. For such n, the operator A — K, : £2 — (2
is given by

(@)oo —(0,0,...,0,0n41Tn+1, Ant2Tnt2,---)

where the sequence on the right-hand side begins with n zeros. Given a vector

(Tm)pe_q € L2, we have

(oo}
2 2
[(A—Ky) <$m>§:1”¢2 = Z |am!|™ |zm]
m=n+1
o0
ey Yo leml’ <el(@mdmeille s
m=n+1

and so ||[A — K, || < ¢ for integers n > N.

4. Give an example of a bounded linear operator between Hilbert spaces whose
image is not a closed subspace.

Solution. Let us consider the operator A defined in the previous exercise
with the sequence (a,), -, = <1, %, %, i, .. > Then, by the previous exercise,
the resulting operator A is compact. For any given vector with only finite many
nonzero coordinates

= (xy,T2,...,2,,0,0,...) € (%,



the vector (z1, 212,323, ...,n2,,0,0,...) € £? is mapped by A into . Thus the
image of A contains all vectors of £2 with only finitely many nonzero coordinates,
and the latter vectors form a dense subset of 2. Thus the closure of the image
of A is the entire (2.

On the other hand, the image of A itself is not the entire ¢2. For instance,
the vector <17 %, %, .. > € £2 is not in the image of A since its preimage under A
would be the vector (1,1,1,...) which is not contained in /2.

5. Assume that K € Z(H) and that for some positive integer ny we know that
K™ is compact. What can you say about Ker (1 — K)?

Solution. By Riesz’s theorem, 1 — K™ has a finite-dimensional kernel. Since
1-K"=(1+4K+K*+...+ K™ ") (1-K),

we have Ker(1 — K) C Ker(l — K™), and Ker(1 — K) must also be finite-
dimensional.

6. Assume that A, B € Z(H, H) commute, i.e. AB = BA. If AB is invertible,
what can you say about the invertibility of A and B?

Solution. Since AB is injective and surjective, A is surjective and B is in-
jective. Since BA = AB is injective and surjective, A is injective and B is
surjective. Thus, both of the operators A and B are bijective. Furthermore,
since

AB(AB)™'=id and BA(BA)™!'=id,

we have
A™' =B(AB)™' and B7'=A(BA)™,

and the operators A~! and B! are compositions of bounded linear operators,
and therefore also bounded linear operators. That is, we have shown that A
and B are both invertible.

7. Consider the integral operator
b
Huw) = [ K@y uw)dy, o elab],

Assume that K € L?([a,b] x [a,b]). Prove that ¢ is compact L?([a,b]) —>
L?*([a,b]).

Solution. Let us write I for [a,b] and I? for [a, b] x [a, b]. Since the continuous
functions C(I?) are dense in the space L?(I?), there exists a sequence of contin-
uous functions Cq,Ca, ... € C(I?) such that C,, — K in L*(I?) as n —> oo0.
Let %,, be the bounded operator L?(I) —s L?(I) defined by

for a.e. x € I for all u € L2(I).



Now we have
|2 — anHL2(1)_>L2(1) <K - Cn||L2(12) — 0,

as n — oo, and we have proved in the lectures that the operators %, are
compact operators of L?(I), and so the operator .# is the limit of a sequence
of compact operators in the operator norm. The result of exercise 2 now states
that J¢ is compact.

8. Prove that a compact operator K : ¢2(C) — ¢2(C) is a norm limit of finite
dimensional operators. Hint: Let ), be the orthogonal projection to span
{e1,...,en}, where {e;) is the standard orthonormal basis of ¢?(C). Let K,, =
Q. K and prove that || — K,|| — 0 by considering a suitable finite covering
of the compact set K (B), where B is the closed unit ball of £2(C).

Solution. Let us be given an € € R, and let us first cover the compact set
K|[B] by the open balls B(z,¢), where x ranges over K[B]. By the compacity of
K there is a finite subcovering with, say, balls B(z1,¢€), ..., B(2m,,&) where m €
Zy and x1, ...,z € K[B]. What we have now achieved is that each element
¢ € K[B] can be represented in the form ¢ = z; + ¢ for some £ € {1,...,m}
and some vector ¢ € £2 with [|1|| < e. Now we can estimate

1K = Kull = I(1 = Q@)K = sup [|(1 = Qu)Kz| = sup [[(1-Qn)¢ll
z€B pEeK|[B]

N

sup  sup [|(1 —Qn)(ze + 9|
1<E<m [lpl|<e

< sup [|(1 = @n)zel + sup [[(1— @)yl

1sesm llll<e

For sufficiently large integers n, we have ||(1 — Qn)z¢|| < € for any given ¢,
and since there are only finitely many different values of ¢, the first supremum
is < ¢ for sufficiently large integers n.

It is fairly clear that ||@n] < 1, and so ||[1 — Q.|| < 2, and the second
supremum is always < 2e.

We can now conclude that ||K — K, || < 3e for sufficiently large integers n,
and so we are done.

9. Let’s define the shift operator S: £2(C) — ¢2(C) by

0 for n =0,
Tpo1 form=1,2 ...

(Sz), = {
Here x = (x,,).—;. Also, let M: £?(C) — ¢?(C) be defined by
(Mz), = (n+1)"a,.

Show that the product T'= M S is a compact operator that has no eigenvalues.
Hence the spectrum consists only of {0}.

Solution. The operator M is compact by the exercise 3, the operator S is
clearly bounded, and so, by the exercise 1, M S is also compact.



Suppose that A € C is an eigenvalue of MS with an eigenvector x =
(Tn)pro € ¢2. Then the equation Az = M Sz really says that

)\330 = 07 )\.%‘1 = %3?0, )\.’L‘Q = %371, )\1‘3 = %SIL‘Q,
If A # 0, then the first equation implies that g = 0. Then the second
equation implies that £y = 0, the third equation implies that x5 = 0, and so on.
In the end we will have xg = 1 = 2 = ... = 0, which is not possible.
Thus we can only have A = 0. But in this case, the second equation implies
that ¢y = 0, the third equation implies that z; = 0, and so on, and again we
will have g = x1 = 22 = ... = 0, which is not possible.



