Integral equations
Solutions to the second problem set

1. Give a detailed proof for the convergence of the series defining the resolvent
kernel of a Volterra equation of the second kind with a weakly singular kernel.

Solution. So we need to prove that the series

3K ™ (s,t)

n=no
converges absolutely and uniformly. This will follow from the estimate
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which holds for all s and ¢ and for each n € Z,, and where C' € R, is such that
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We shall prove this by induction on n. The case n = 1 is certainly true, so
assume we know the estimate for some K (™, and let us consider K"+, By
mimicking the computations done in the section on weakly singular kernels in
the lecture notes, we get, for t < s,
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and the desired estimate follows since
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The estimate for s < t is similar.

2. Consider the example from mechanics in Section 1.6 of lecture notes: find the
solution in the case when f(x) =T, i.e. when a particle is released from height
x > 0, it always takes a constant time 7" > 0 to travel along the curve y = F(x)
to zero height. Find the equation of F, or at least a series approximation to it.

Solution. So, our task here is to derive a reasonable equation for F(z) from

the integral equation
/ V14 (F'(t dt
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We shall use the work done in the lecture notes with the notation
1
=297, G(s,t)=1, a= 2 and  o(t) = /14 (F'(t))2.

Then ¢ satisfies the equation

/ Ky () p(t) dt = f1 ().
0

Here, using the substitution ¢t = x cos? u,
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In the same vein,
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Thus, ¢ solves the equation

/m(p(t) dt = 2\/%%\/5
0

Differentiating this gives
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1+ (F'(2))? = ¢(z) =

and squaring gives

29 T?
F’ 2 _
(F/(2))? = 2
which is a differential equation for F. The curves y = F(z) which arise from
this differential equation turn out to be cycloids.

?

3. Consider a nonlinear Volterra equation of the second kind,
Jr/K(s,t,ga(t))dt: f(s). (%)
0

Assume the following: the function K (z,y, z) is continuous in the set D defined
by
=], lyl <a, 2] <D



and that K is uniformly Lipschitz continuous in z,
|K($,y,21)7K(x,y,22)|<K|Zl—22|, <I,y,Z7>€D

Also, assume that [ € C([—a,a]), f(0) = 0, and that f satisfies the Lipschitz
condition
|f(z1) = flz2)| < Klz1 — 22|, || <a
Let
M =sup|K]|.
D

Show that the iteration

converges in the set

|s|] <d a’ = min aL
~ 7 ) k/‘ + M )

and that the limit is a solution of () on the interval [—d’,a'].

Solution. We first have to check that each ¢,, takes values only in the interval
[—b, ], because its values will be fed into K. First, for s € [—d’, @], the Lipschitz
property of f implies that

kb
<b.
k+ M

Next, assume that —b < @, (s) < b for all s € [—d’,a’] for some n € Z; U {0}.
Then we may estimate for s € [—a’, a’] that

[eo(s)| = [f(s) = F(O)l S k[s = O] < ka' <

kb Mb o,
E+M k+M

[onra(6)] < O+ [ K (s, ti00(0)| ] < k' + M 0’ <
0

Thus the sequence (p,), - is a well-defined sequence of continuous functions
defined in [—a’, a’] and taking values in [—b, b].
We shall prove by induction on n that
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for all s € [—a’,a’] and for each n € Z,. First we observe that

01(5) = 0(s)] = | [ K(sstopo(®) | < [s| 0.

Next, assuming that we have proved the inequality for some n € Z, we estimate

|Pnt1(5) = ¢n(s)] < /|K(s,t790n(t)) — K(s,t, pn-1(t))| dt
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Now the series
w0+ (1 — o) + (2 — 1) + ...
converges absolutely and uniformly in [—a’,d’], and so we know that the se-
quence (@), converges uniformly in the interval [—a’,a’] to a continuous
function, which we shall call ¢. We note that ¢ can only take values in the

interval [—b,b] as each of the functions ¢,, does.
We also have

/K(s,t, on(t)) dt — /K(s,t,g@(t))dt
0 0

uniformly in s € [—a’,a’] as n — oo. This follows from the estimates

[tI<]s]

/K(s,t,wn(t)) dt — /K(Svtv(p(t)) dt] < K'|s| max |on(t) — ¢(t)],
0 0

and the fact that ¢, (¢) tends uniformly to (t).
Thus, in the limit n — oo, the equation which defined ¢,, in terms of ¢, 1
becomes

o(s) = f(s) - / K (5.1, () dt,
0

and so ¢ is indeed a solution.

An alternative approach. Let us also show another way of approaching
this kind of a problem. The following solution is not strictly speaking a solution
unless @’ K < 1, or unless we set

a =min‘a L L
B "k+M K+1[

or so, but it is nonetheless worth giving here. Let us first recall the following
important fact from the topology of metric spaces:

The contraction principle. Let X be a closed metric space with metric d,
and let A: X — X be a contraction, i.e. assume that there exists a constant
¢ €10,1[ such that

d(A(x), Ay)) < cd(z,y)

for all z,y € X. Then there exists a unique point y € X such that A(y) =y,
and furthermore, given any point x € X, the sequence

converges to y.



Proof. Let y,z € X be such that A(y) =y and A(z) = z. Then

d(y, z) = d(A(y), A(2)) < cd(y, 2),

which is only possible if d(y, z) = 0. Thus the fixed point y, if it exists, must
be unique.
Next, let x € X be arbitrary, and let us consider the sequence

yo=z, yi=A@), y2=AAr), ys=AAA(2)),

If the sequence (y,),— is Cauchy in X, then it converges to some y € X, and
in view of the manifest continuity of A, the relation y, = A(yn—1), which holds
for all n € Z,, becomes y = A(y) in the limit n — oo, thereby establishing
the existence of a fixed point.

Therefore, we only have to prove that (y,,). -, is Cauchy. To see this, let
n € Z4 and k € Z4. Then

d(y'ru yn+k) S d(yna ynJrl + d(yn+1a yn+2) +...+ d(yn+k717 ynJrk)
< d(yo, y1) + " d(yo, y1) + -+ T d(yo, 1)
o

< () dlyo ) = 1

d
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and since the last expression is independent of k and tends to zero as n — oo,
we are done.

Now, the idea of the solution is to apply the contraction principle to the
space

X={pe C’([—a’,a’])‘@[[—a’,a’]] C [-b,b]},

which we shall equip with the metric d(p, ) = ||¢ — 9||., defined for ¢, ¢ € X.
A Cauchy sequence (pn),—, in X is a Cauchy sequence in the Banach space
C([-d',a']), and therefore converges to some ¢ € C([—a’,a']). Since |¢,(z)] < b
for all s € [—a’,a’] and for each n € Z,, we clearly Inust also have |¢(s)] < b
for all s € [—d/,d'], so that ¢ € X and X is complete.

Let us next observe that f € X. We know that f is continuous in [—d’, a’],
so we only have to check that the image of f is contained in [—b,b]. This is so
because, for s € [—a’,a’], the Lipschitz property of f implies that

[F($)l = 1f(s) = F(O) < ks — 0] < ka' <

We shall define for ¢ € X an operator A by the formula

(A<p /Kstgo

for all s € [~a’,a’]. At first we only know that A maps X into C([—d’,a']), but,
for s € [—d’,d’], we may estimate

| (Ap) ()] < 1£( |+/|K8t,g0 )| dt| < ka'+Ma' <



and so we have Ap € X and A: X — X.
Finally, we only have to prove that A is a contraction. Let ¢,1 € X be
arbitrary. Then, for all s € [—d/,a’], we have

|(Ag) (s) — (A¥)(s)| < /WK(&uw@»-—K(&mwanym

and so
d(Ap, AY) < o' K d(p,v),

and A is a contraction, given that o’ K < 1.

4. Let (X, (:])) be an inner product space and ||-|| the induced norm. Prove
that an inner product satisfies the so called parallelogram identity

2 2 2 2
lz+yll” + e —yll” =2=[" +2[ly[I",  zyeX
Solution. We write the norms in terms of the inner product:

|z +yl* + lz — ylI* = (@ +ylz +y) + (z —ylz —y)
= (z]z) + (2ly) + (yl2) + (yly)

+ (@lz) — (2[y) — (ylz) + (yly)

=2 (zla) + 2 (yly) = 2||=)* + 2|y]|*.

5. Consider the space C([a,b]). Show that the sup-norm

[fllsup = sup [f(2)

z€la,b]
is not determined by any inner product.

Solution. The idea is to pick some functions f, g € C([a, b]) for which the par-
allelogram identity is not satisfied. One choice could be to choose the function
f so that || f[|,,, = 1 and that f vanishes in [2£2, b], and the function g so that
I9llsp = 1 and that g vanishes in [a, 42]. Then

sup

1+ 9llswp = I = 9llsup = [fllsup = N9llsup = 1.
and the parallelogram identity clearly can not hold as 1 + 1 # 2 + 2.
6. Similarly, consider the LP-norms

1/p

b
1£1, = / F@)fPde|

where 1 < p < oco. Prove that if p # 2 then this norm is not induced by any
inner product.



Solution. We proceed as in the previous solution: we pick two functions
f,g € LQ([a, bD for which the parallelogram identity fails. We write £ = 2 ,
and choose f to be 1 in [a,a + ¢[, and 0 in [b — £,b]. We also choose g =1 — f.
Now

1+ gl*? + 11f — g*” = 2(20*/7 = 2. 22227,

whereas
2 2
2(|F177 + 21|gl|*'? = 46277,

and 2 - 22/P £ 4 unless p = 2.

7. Let (X;,||-]|) be normed spaces, i = 1,2,3. Show that, for the norm of a
linear operator A: X; — X5, we have

Az Az
HAH _ sup H ||2 — g || H2
o<lel,<t 2l jep,=1 Nl

Also, let B: X9 — X3 be linear. Prove that
IBA|| < [IB] - | A]l.-

Solution. The first assertion follows from the fact that, for any x € X7 with
0<|zll, <1,
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and ‘

over the same set of values as the supremum over z satisfying ||z||; = 1.
The second assertion follows from the estimates

= 1, so that the supremum over those z with 0 < [|z||; < 1 is really

_Z
llzlly

[|[BAz| < [|B| - [[Az| < [|BI - [ All - [[=] ,
which hold for all x € X;.

8. Consider the integral equation

1

1
20/6 ley? sm 2 +y )f(y)dyzsinx.
0

Prove that this has a unique solution L? ([07 1]), and that in fact this solution is
also continuous.

Solution. Let K be the linear operator L*([0,1]) — L?([0,1]) defined for a
given f € L*([0,1]) by the formula

(Kf)(z) = %/e_lw‘zsin (2* +y°) fy) dy
0

for all € [0,1]. This is an integral operator with the kernel function

1
K(z,y) = 2—06"“"2 sin (x2 + yz) .



Since clearly

1
sup /|K<a:,y>\dy<— and  sup /|ny|\dx
zel0.1]) 20 yel0,1]

Schur’s lemma tells us that K is a bounded linear operator of L2([0 1]) with
operator norm || K|| < 55. Thus, the operator I — K is invertible by Neumann
series and the equatlon

f—Kf=g

has a unique solution in L?([0,1]) for any given g € L*([0,1]).

To satisfy the second demand of the exercise, we will prove that K f is
continuous for any f € L2 ([0, 1]) For this purpose, let z, 2" € [0, 1] be arbitrary.
Since K is infinitely smooth, the supremum

M= sup |(8K)(z,y)|
z€[0,1],
y€[0,1]

is finite. Now the continuity of K f follows from the estimates

(K f) () — (Kf)()] = / (K(x,y) - K@) f(y)dy
0
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9. Let H be a Hilbert space, and A: H — H a bounded linear map for which
[[A™] < 1 for some positive integer ng. Prove that I — A is invertible and
determine its inverse.

Solution. Let n € Z, be arbitrary and divide it by ng to get a representation
n=qno+r with ¢ € Z, U{0} and r € {0,1,...,n9 — 1}. Then, writing

2
a2

C= max{l, HA

we may estimate
[A™| < LA™ [|A"]] < C [ A™]|.

By this and the triangle inequality we may estimate

< Z [A™]] < C'no Z [A™ " < oo,

q=0

so that the series 1 + A + A% 4 ... converges absolutely to a bounded operator
S: H — H. Also, we have ||A"]] — 0 as n — 0.



Let us observe next that

N—o0c0 —00

N
— = i _ n_ _ AN+1Y _
(1-A)S= lim (1 A)T;)A i (1—- AN+ =1,
as well as

N
SA-4)= lim Y A"(1-A)= lm (1-AV)=1,
n=0

N—oc0

and therefore 1 — A is invertible with inverse S.



