Integral equations
Solutions to the first problem set

Before looking at the problems, let us recall two useful facts from the lectures:

Lemma. Let F' be a continuous function from I x I to R, where I is an open
interval of R containing zero, and assume that F' is continuously differentiable
with respect to the first variable. Then we have
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for s € 1.

Lemma. Let F be a continuous real-valued function in [0, ] X [0, z], where

z € R. Then
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Proof. This follows easily from Fubini’s theorem if we introduce a function
x: [0,2] x [0,2] — R for s,t € [0, 2] by
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for then
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1. Solve the Volterra equation

—/(s—t)<p(t)dt=23.
0

Solution. The idea of the solution is to reduce the equation to an initial value
problem for a differential equation through repeated differentiation.

The substitution s = 0 shows that a solution must satisfy ¢(0) = 0. The
equation also implies that ¢ is continuously differentiable as the other two terms



are, assuming that ¢ is at least, say, continuous. Differentiating the equation

gives
S

do) - [t =2,
0

Substituting again s = 0 gives another initial value condition ¢’'(0) = 2, and
the equation implies that ¢’ must also be continuously differentiable. Taking
derivatives once more we land into the differential equation

¢"(s) —p(s) = 0.
A solution to this must be of the form
©(s) = Acosh s + Bsinh s

for some constants A and B.

Since 0 = p(0) = A, we have ¢(s) = Bsinh s for some constant B. Further-
more, since 2 = ¢’(0) = B, we conclude that the only possible solution to the
original integral equation is

©(s) = 2sinhss.

Finally, this really is a solution as we know from the lectures that a solution
must exist.

2. Solve the Volterra equation
S
o(s) — 4/ (s —t) p(t)dt = s°.
0

Solution. We proceed as in the previous solution. The substitution s = 0
gives the initial value condition ¢(0) = 0. Assuming that the solution is at
least continuous, the integral equation implies that it must be at least once
continuously differentiable. Differentiating the integral equation then gives

S

o'(s) — 4/¢(t) dt = 3s%.
0
This implies another initial value condition ¢'(0) = 0 and that ¢’(s) must be
continuously differentiable, too. Taking derivatives again gives the differential
equation
&' (5) — 4p(s) = 5.

Now we have to solve an inhomogeneous initial value problem. One obvious
solution to the differential equation is given by ¢(s) = —32. Thus every classical
solution to the differential equation is of the form

3
©(s) = Acosh2s + Bsinh2s — ?S

for some constants A and B.



We must have 0 = ¢(0) = A and so a solution to the integral equation must
be of the form

3
¢(s) = Bsinh2s — ?8

Since ¢'(s) = 2B cosh 2s — 3, the initial value condition ¢’(0) = 0 implies that
2B = % Thus the only possible solution is

w(s) = %sinhQs - 3;

Finally, this must be a solution as we know from the lectures that a solution
must exist.

3. Let K be a continuous integral kernel. Let us consider the iterated kernels
KW (s,t) = K(s,t), K™ (s,t)= / K(s,r) K" Y(r,t)dr,
t
which were defined in the lectures. Show that
K (s,1) = / K™D (s, r) K(r,t) dr.
t

Hint: Use induction on n.

Solution. We shall use induction on n as instructed. The claim holds trivially
for n = 2.
Let us assume that the claim holds for some n > 2 so that

K (s,1) = / K= (s,7) K (r, 1) dr.
t

Then

S

K (s,¢) = /K(s,r)K(")(r,t) dr
t
:/K(s,r)/K("_l)(r,u)K(mt)dudr
t t
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t u

= /K(")(s,u) K (u,t)du.
t

4. Let us consider the Fredholm integral equation of the second kind

b
o(s) — )\/K(s,t) p(t)dt = f(s), a<s<b, (%)

a



where K € C([a,b] x [a,b]), f € C([a,b]) and A € C. Study what extra
conditions are needed for the kernel K so that the ansatz

p(z)=> AN'on(z)
n=0
used in the lectures would give a continuous solution to (). Will the solution

then be unique?

Solution. We shall prove, using arguments similar to those used in the lectures
for the Volterra equation of the second kind, that if

a<s<b

b
1
[A] < U where M = max /|K(s7t)|dt7
a

then the Fredholm equation of the second kind has a unique solution u €
C ([a,b]), which is indeed given by the ansatz involving the iterations of in-
tegration against K: the ansatz was

p(s) =D A" on(s)
n=0

for all s € [a, ], where g = f and

b
on(s) = / K(5,1) onr(s) dt

for all s € [a,b] and n € Z,..
The iterate @, (s) can be estimated for s € [a, b] by

[on(s)] < M™m,

where

m = max |f(s)].

This is perhaps easiest to see through induction. By the definition of m, we
certainly have |po(s)| < m. Now, if |¢p,—1(s)| < M 1m for all s € [a,b] for
some n € Z, then

b b
lon ()] = /K(s,t)gpn_l(t)dt g/\K(s,t)\dtM”’lmgM”m.

Now we can prove that the infinite series converges uniformly for s € [a, b].
This follows by estimating the tail of the series:

Z A" @n(s)
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Thus ¢ is a well defined continuous function on [a,b]. Also, this allows us to
integrate ¢ against K termwise giving

b oo
)\/K(s,t) o)t =3 N ga(s),

for all s € [a,b]. Since the infinite series involved converge absolutely, a simple
exchange of the order of summation shows that ¢ indeed solves the Fredholm
equation of the second kind.

Finally, the solution is unique: If there was another solution v € C’([a, b]),
then the difference ¢ — 1 would satisfy the homogeneous Fredholm equation of
the second kind

b
o(s) —b(s) = A / K (s.t) ((t) — (1)) dt

for s € [a,b]. Let | — 1| obtain its maximum at a point sy € [a,b]. Given the
condition || < 77, we see that

lp(s0) — ¥ (s0)| < [A| M [p(s0) — ¥(s0)]-

Now ¢(sg) — 1(sg) = 0, for otherwise we would have

[o(s0) = P(s0)| < [(s0) = P(s0)l -
But then ¢(s) = ¢(s) for all s € [a, b] and we have shown uniqueness.

5. Reduce the initial value problem

y® +22y =0, y(0)=y'(0)=0, y"(0)=1

to an equivalent Volterra equation of the second kind.

Solution. The integral equation is obtained by repeatedly integrating the
equation. The first integration gives simply

x

y' () —1+2 [ ty(t)dt = 0.
/

The second integration gives first

x

y’(m)—x+2//uty(t)dtdu=0,

0

and exchanging the integral signs gives

x x

y’(x)—x—i—Q/t/duy(t)dt:O,

0 t



which simplifies to

x

y’(x)—x+2/t(az—t)y(t)dt=0.

In the same vein, integrating for the third time gives
x2 xr u
y(x) — > +2//t(u—t)y(t)dtdu:0.
0 0
Changing again the order of integration gives
x xT
22
y(x) — =) +2/t/(u—t)duy(t)dt:0,
0t

which simplifies to

x

.132

va)+ [ -0y =T

0

which is a Volterra integral equation of the second kind.

Finally, we see that this Volterra equation implies the original initial value
problem simply by repeatedly substituting = 0 and differentiating, in the
same way as in the solutions to the problems 1 and 2.

6. Solve the Volterra equation of the first kind

S

/(s+t)g0(t)dt:s3—1.

1

Solution. Let us look again for a continuous solution of the integral equation.
Certainly a solution must be defined in a neighbourhood of 1 in order for the
integral equation to make sense. It will turn out that, in a small neighbourhood
of 1, there is a unique solution, which will extend to all positive reals but tends
to 0o as s — 0+. Thus we will ultimately be looking for a continuous function
p: Ry — R,

Differentiating the integral equation gives

S

2sp(s) + /(p(t) dt = 3s2.

This equation implies both the initial condition ¢(1) = 2 and the continuous

differentiability of ¢. Differentiating the equation again gives the differential
equation
2p(s) + 259 (5) + (s) = 6s.

For s € R, this has the equivalent form

251/2 o(s) + %2 ¢ (s) = 35%/2.



This is just
d
— (33/2 ga(s)) =332,
S

and so 6
32 p(s) = 585/24-0

3

15> and the only possible

for some constant C. Since (1) = 2, we have C =
solution to the integral equation is
6s 3 —3/2
§)=—+—s .
pls) = =+ 15
Finally, we can easily check that this really is a solution to the original
integral equation:
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7. Let us consider the Volterra equation of the first kind
[ KG0e =10, ()

where K and f are continuous. Let us assume that K (s,s) =0 for all s € [a, b],
and that the function K has continuous partial derivatives with respect to s up
to order two. Formulate and prove a solvability result for the equation ().

Solution. Certainly f must be at least once continuously differentiable because
the left-hand side is. Also, f(a) must vanish. Since K vasnishes of the diagonal,
differentiating the integral equation gives

S

[@E) 6.0 pt = 76)

a

where 0; denotes differentiation with respect to the first variable of K(-,-).We
now see that f’ must be continuously differentiable and vanish at a, too. Dif-
ferentiating the equation again gives

S

(81K)(3,3) ©(s) —|—/(312K)(5,t) e(t)dt = f"(s).

a



Now, if (81K)(s7 s) # 0 for all s then this is a Volterra integral equation of the
second kind:

S

(O2K)(s,1) _ ")
#(s) +/ (81K)(s, s) () dt = (6‘1K) (s,5)

a

This equation always has a unique continuous solution by the results proved
in the lectures. Also, multiplying this latter equation by (alK ) (s,s) and then
integrating the equation twice, we obtain the original Volterra equation of the
first kind. We thus obtain a solvability result:

Proposition. Let K € C([a,b]x[a,b]) be twice continuously differentiable with
respect to the first variable, and assume that K(s,s) = 0 and (81K)(5, s)#0
for all s € [a,b]. Also, let f € C?([a,b]) satisfy f(a) = f'(a) = 0. Then the
Volterra integral equation of the first kind

/ K(s,1) p(t) dt = f(s)

has a unique solution ¢ € C([a,b]).



