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A special stochastic process, called the coalescent, is of fundamental interest in population
genetics. For a large class of population models this process is the appropriate tool to analyse
the ancestral structure of a sample of n individuals or genes, if the total number of individuals
in the population is su$ciently large. A corresponding convergence theorem was "rst proved
by Kingman in 1982 for the Wright}Fisher model and the Moran model. Generalizations to
a large class of exchangeable population models and to models with overlying mutation
processes followed shortly later. One speaks of the &&robustness'' of the coalescent, as this
process appears in many models as the total population size tends to in"nity. This publication
can be considered as an introduction to the theory of the coalescent as well as a review of the
most important &&convergence-to-the-coalescent-theorems''. Convergence theorems are not
only presented for the classical exchangeable haploid case but also for larger classes of
population models, for example for diploid, two-sex or non-exchangeable models. A review-
like summary of further examples and applications of convergence to the coalescent is given
including the most important biological forces like mutation, recombination and selection.
The general coalescent process allows for simultaneous multiple mergers of ancestral lines.

( 2000 Academic Press
1. Introduction

Since Fisher (1958) and Wright (1969) or even
since Darwin and Mendel there is no doubt that
modelling population systems in biology or
particle systems in physics is of basic interest in
modern science. Many attempts have been made
to model such systems, most of them based on
either deterministic approaches (di!erence and
di!erential equations, dynamical systems), on
stochastic approaches (stochastic processes) or
mixings of both (stochastic dynamical systems
Arnold, 1994). Time-discrete and time-continu-
ous models are distinguished. In most cases,
it depends on the speci"c problem or on the
*E-mail: moehle@mathematik.uni-mainz.de

0022}5193/00/120629#10 $35.00/0
structure of the population whether a time-dis-
crete or a time-continuous model seems to be
more appropriate to describe and to analyse the
population. In some cases, time-discrete
processes can be approximated using time-con-
tinuous processes. The time-continuous limit
processes are usually constructed via di!usion
approximations (Ethier & Kurtz, 1986) which are
in principle based on "rst- and second-order
Taylor-like expansions of certain moments or
transition functionals. Population genetics ap-
plications of such approximations can be found
in Ethier & Nagylaki (1980), Nagylaki (1990) and
references therein. The n-coalescent turns out to
be a time-continuous approximation for the an-
cestral structure of a certain class of time-discrete
population models. In stochastics the evolution
( 2000 Academic Press
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of time-discrete populations is usually modelled
via a family of random variables Ml(r)

i
N
i,r

, where
l(r)
i

is the number of o!spring (children) of the i-th
individual (particle) alive in the r-th generation.
Simple models assume that the population is
haploid having non-overlapping generations, i.e.
the parents are removed from the population and
the children form the population of the next
generation.

Without further assumptions on the joint dis-
tribution of the o!spring variables l(r)

i
it is not

easy to derive any interesting or detailed results
for such a population model. In order to imagine
how large this class of models is, the following
two cases are considered. Assume that the o!-
spring variables l(r)

i
are independent. Then this

model is a typical BienaymeH }Galton}Watson
branching process. Many scientists have been
working in this "eld (Athreya & Ney, 1972;
Harris, 1989; Jagers, 1975). Another interesting
scenario appears when the considered population
is in some biological equilibrium. This is usually
modelled by the assumption that the population
size is "xed to some constant N in each genera-
tion. In this case, for "xed r the o!spring vari-
ables l(r)

i
tend to be negatively correlated. The

coalescent is the appropriate tool to analyse the
ancestral structure for models of this type.

This article gives a basic introduction to and
can be considered as well as a review about the
theory of the coalescent. It starts with the above-
mentioned models with "xed population size and
collects the convergence-to-the-coalescent the-
orems so far known. The author is aware that
such a review cannot be complete in the sense
that everything about the &&coalescent'' is covered.
Other excellent reviews on this topic are available
(Donnelly & TavareH , 1995; Hudson, 1991; Li
& Fu, 1999), most of them focusing on the gen-
etics impact of the coalescent. This article aims to
illuminate the dynamical and mathematical as-
pects of the coalescent.

2. Haploid Population Models and their Ancestral
Structure

We consider "rst the neutral haploid popul-
ation models with discrete, non-overlapping
generations r3N

0
:"M0, 1, 2,2N and "xed
population size N3N :"M1, 2,2N introduced by
Cannings (1974, 1975). In these models l(r)

i
,

i3M1,2,NN denotes the number of descendants
of the i-th individual alive in the r-th generation,
r3N. As usual in ancestral population genetics
the generations are labelled backward in time, i.e.
if for example the r-th generation is the parent
generation then the (r!1)-th generation is the
children generation. As the population size is
assumed to be "xed it follows for each r3N that
the o!spring variables l(r)

i
, i3M1,2, NN, have to

satisfy the condition

N
+
i/1

l(r)
i
"N. (1)

The behaviour of the ancestral structure of such
models has been "rst studied by Kingman
(1982a}c), later by many other authors (see, for
example Dannelly & TavareH , 1995; Gri$ths
& TavareH , 1994; Marjoram, 1992) for the class of
exchangeable neutral models. For a "nite se-
quence of random variables l

1
,2, l

N
the ex-

changeability is de"ned by the property that the
joint distribution of these variables is invariant
under permutation, i.e. the distribution of
(ln1,2, lnN ) does not depend on the special
choice of the permutation n of the indices
1,2,N. A typical example is the well-known
Wright}Fisher model, where the o!spring vari-
ables l(r)

1
,2, l(r)

N
are symmetrical multinomially

distributed, i.e.

P (l(r)
1
"k

1
,2, l(r)

N
"k

N
)"

N ! N~N

k
1
!2k

N
!

(2)

as long as k
1
#2#k

N
"N. Later, the results

have been extended to more general models, for
example for models where the exchangeability is
not assumed any more (see for example MoK hle,
1998a, 1999). Here we assume that

1. the o!spring vectors (l(r)
1

,2, l(r)
N

), r3N are
independent and identically distributed for
di!erent generations and that

2. conditioned on the l(r)
i

all &&legitimate'' as-
signments of o!spring to parents (i.e. consis-
tent with the l(r)

i
) are equally likely.
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These two conditions are the key properties for
all that follows. We shall see soon that the "rst
condition ensures that the so-called ancestral
processes considered later has the Markov prop-
erty. The second assumption ensures that the
transition probabilities of the ancestral process
have a certain structure [see eqn (3)]. Note that
the second condition is weaker than the assump-
tion that the o!spring variables are exchange-
able. For example, it allows for ordered family
sizes l(r)

1
*2*l(r)

N
within each "xed generation.

Write l
i
for l(1)

i
for convenience. Fix n)N and

sample n individuals at random from the current
generation. For r3N

0
let R

r
denote the equiva-

lence relation which contains the pair (i, j) if and
only if the i-th and the j-th individual of this
sample have a common ancestor in the r-th gen-
eration backward in time. The above "rst condi-
tion ensures that the so-called ancestral process
(R

r
)
r|N

0
is a time-homogeneous Markov chain.

The state space is E
n
, the set of all equivalence

relations on M1,2, nN and the initial value is
R

0
"D :"M(i, i) D i3M1,2, nNN. For m, g3E

n
let

pmg :"P(R
r
"g DR

r~1
"m) denote the probabil-

ity for a transition of the ancestral process from
m to g. Obviously, pmg"0 for m-/ g. Assume now
that m-g. As in Kingman (1982b) let C

1
,2, C

a
denote the equivalence classes of g and let Cab ,
a3M1,2, aN, b3M1,2, baN denote the equiva-
lence classes of m such that Ca"Zbab/1

Cab . From
the second condition, it follows by a combina-
torial &&putting balls into boxes'' argument (see,
for example, Kingman, 1982b; MoK hle, 1998a)
that the transition probability for the case m-g
is given by

pmg"
1

(N)
b

N
+

i1,2, i
a/1

!-- $*45*/#5

E((l
i1
)
b1
2 (l

ia
)
ba
), (3)

where b :"DmD denotes the number of equivalence
classes of m, b

1
,2, b

a
are the group sizes of

merging equivalence classes of m and the notation
(x)

b
:"x (x!1)2(x!b#1) is used.

3. Convergence Results for the Coalescent

The n-coalescent (R
t
)
t*0

(also called King-
man's coalescent) is a time-continuous Markov
process with state-space E
n
, initial state D and

in"nitesimal generator Q"(qmg)m,g|En given by

qmg :"G
!b (b!1)/2, if m"g,

1, if mpg,

0, otherwise,
(4)

where b :"DmD denotes the number of equivalence
classes of m and mpg if and only if m-g and
DmD"DgD#1, i.e. g is obtained from m by combin-
ing (Latin: coalescere"to merge, to unite) two
equivalence classes of m.

In 1982, Kingman (1982a}c) published the
following "rst convergence result for the case of
exchangeable reproduction. If the variance p2

N
:"

Var(l
1
) converges to some constant p23(0, R)

as N tends to in"nity and if sup
N

E(lk
1
)(R for

all k3N, then the "nite-dimensional distribu-
tions of the time-scaled ancestral process
(R

*Np~2t+
)
t*0

converge to those of the n-coales-
cent. Kingman's proof is based on the expansion

P
N
"I#N~1p2

N
Q#O(N~2)

for the transition matrix P
N

:"(pmg)m,g|En of the
ancestral process. This &&Taylor expansion'' is
then used to verify that lim

N?=
P*Np~2 t+

N
"etQ. The

main fact of this convergence result is that one
has to measure time in units of N generations in
order to reach convergence to the coalescent.

The standard example is the Wright}Fisher
model where the o!spring variables (l

1
,2, l

N
)

have the symmetrical multinomial distribution
(2). In this case, Var(l

1
)"1!1/N converges to

p2 :"1. The supremum condition is also satis"ed
as the descending factorial moments are given by
E((l

1
)
k
)"(N)

k
N~k)1. Unfortunately, the

above convergence result is not applicable for
some very important population models. For
example, for the Moran model (l

1
:"2, l

2
"

2"l
N~1

:"1, l
N

:"0) it was "rst shown separ-
ately that the "nite-dimensional distributions of
the process (R

*N2t@2+
)
t*0

converge to those of the
n-coalescent. Here the time has to be measured in
units of N2/2 generations. In comparison with
the Wright}Fisher model this time-scaling is of
order N higher. This is reasonable as under the
Moran model the reproduction from generation
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to generation is (more or less) of order N slower
than in the standard Wright}Fisher model.

In recent years, it was a challenge in biology
and mathematics to extend these convergence
results to larger classes of population models.
Obviously,

c (N) :"
1

(N)
2

N
+
i/1

E((l
i
)
2
) (5)

is the probability that two individuals, chosen
randomly without replacement from some gen-
eration, have a common ancestor one generation
backward in time. This probability is called
the coalescence probability. It is assumed that
c(N)'0, i.e. the trivial model l

1
"2"l

N
:"1

is avoided. The following more general conver-
gence theorem is known since 1998 and shows
that the coalescence probability is the basic
quantity and very important to understand the
theory about the coalescent.

Theorem 3.1. Assume that the following condi-
tions are satis,ed.

1. ¸imit condition: lim
N?=

c(N)"0.
2. Moment conditions:

(a) lim
N?=

1
N3c(N)

N
+
i/1

E((l
i
)
2
lk
i
)"0

for all k3N

(b) lim
N?=

1
N4c(N)

N
+

i,j/1

E((l
i
)
2
l2
j
)"0.

¹hen the process (R
*t@c(N)+

)
t*0

converges weakly
in DE

n
([0, R)) to the n-coalescent as N tends to

in,nity.

The proof of the convergence of the "nite-
dimensional distributions is given in MoK hle
(1998a) (in an even more general, non-time-
homogeneous context) and the proof for the con-
vergence in DE

n
([0, R)) can be found in MoK hle

(1999). The theorem is for example applicable
to the Moran model, where the coalescence
probability is given by c (N)"2/(N(N!1))
&2/N2 and further for all models with
lim

N?=
N2c(N)"R and

sup
N

1
N

N
+
i/1

E(lk
i
)(R ∀k*2. (6)

This includes especially the standard Wright}
Fisher model. If the o!spring variables l

1
,2, l

N
are identically distributed, eqn (6) reduces to the
classical condition &&sup

N
E (lk

1
)(R'' used by

Kingman (1982a, b). Theorem 3.1 has been ex-
tended to non-time-homogeneous models with
deterministic variable population sizes (MoK hle,
1998a, 1999). Unfortunately, for the general case
of stochastic variable population size the litera-
ture is rather sparse and not a lot is known about
the connection to the branching process models,
where the o!spring variables are assumed to be
independent (Athreya & Ney, 1972; Harris, 1989;
Jagers, 1975). Models with in"nite population
size have been studied originally by Fleming
& Viot (1979), later by many other authors (see,
for example, Donnelly & Kurtz, 1996; Ethier &
Kutz, 1993).

The limit condition lim
N?=

c(N)"0 is in fact
necessary to ensure convergence to the coalescent
as otherwise no time-continuous process will
appear as N tends to in"nity. The moment condi-
tions (a) and (b) are too strong. In 1999, the
following convergence theorem was shown. It
presents in some sense the &&minimal'' condition
which is necessary and su$cient for convergence
to the n-coalescent.

Theorem 3.2. ¹he process (R
*t@c(N)+

)
t*0

converges
weakly in DE

n
([0, R)) to the n-coalescent if and

only if

lim
N?=

d(N)
c (N)

"0, (7)

where d (N) :"((N)
3
)~1+N

i/1
E((l

i
)
3
).

This means [see also eqns (3) and (5)] that the
n-coalescent appears in the limit as the popula-
tion size tends to in"nity if and only if triple
mergers of ancestral lines are asymptotically
negligible in comparison with binary mergers.
A proof of Theorem 3.2 for the case of exchangeable
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reproduction is given in MoK hle & Sagitov
(1999b). It can be extended easily to the more
general class of models considered here. Note
that eqn (7) ensures that lim

N?=
c(N)"0. If

the o!spring variables are identically distributed,
then eqn (7) reduces simply to

lim
N?=

E((l
1
)
3
)

N E((l
1
)
2
)
"0. (8)

4. Generalizations for More Complex Population
Models

In recent years, the number of publications
about the coalescent increased enormously. The-
oretical and mathematical aspects are covered as
well as applied statistical and biological topics
and even numerical questions in computer
science (see, for example, Beerli & Felsenstein,
1999 or Gri$ths & TavareH , 1996). The book of
Donnelly & TavareH (2000) gives some historical
perspectives about recent research around the
coalescent. For more details see also the reviews
already mentioned in the introduction (Section
1). The theory of the coalescent has been ex-
tended to more complex models, for example for
models with

z mutation (Donnelly & TavareH , 2000; TavareH ,
1984), for

z diploid and two-sex population models
(MoK hle, 1998c; MoK hle & Sagitov, 1999b),
models with

z self-fertilization or partial sel"ng (Fu 1997;
MoK hle, 1998b; Nordborg & Donnelly, 1997),
further for

z sub-divided population models and geo-
graphically structured models (Bahlo &
Gri$ths, 2000a, b; Beerli & Felsenstein,
1999; Herbots, 1994; Notohara, 1990; Wil-
kinson-Herbots, 1998), for models with

z recombination (Gri$ths & Marjoram, 2000;
Hey & Wakeley, 1997; Hudson & Kaplan,
1988)

z selection (Kaplan et al., 1988; Krone &
Neuhauser, 1997a, b)

z models with changing population size (Don-
nelly & TavareH , 2000; Gri$ths & TavareH ,
1994, 1996; MoK hle, 1998a; Tajima, 1989).
In the following, the above models and connec-
tions between them are discussed in more detail.
As far as possible citations are avoided for the
rest of this section as they are already given in the
list above. The interesting and fascinating result
is that in all cases the coalescent (or some gener-
alization of the coalescent) arises as the popula-
tion size becomes large. This property is called
the robustness of the coalescent. Robustness re-
sults are well known in probability theory. For
example, the central limit theorem ensures con-
vergence to the normal distribution for a large
class of sums of random variables. In this sense,
the author likes to think about Kingman's co-
alescent as the &&genetics normal distribution''.
We now discuss the above models in more detail.

The haploid models have been "rst generalized
by the assumption that mutations occur with
probability k per gene per generation indepen-
dently of the underlying reproduction mecha-
nism caused by the o!spring variables l(r)

i
.

In other words, the reproduction process is over-
laid independently, i.e. in a neutral way, by a
Bernoulli mutation process. If in addition to con-
dition (7) the mutation rate h :"lim

N?=
2k/c (N)

exists, then the time-scaled ancestral process
(R

*t@c(N)+
)
t*0

converges weakly to a limit process
(R

t
)
t*0

, the so-called n-coalescent with mutation
rate h. In the limit independently of the under-
lying genealogy mutations occur on the branches
of the tree according to a Poisson process with
rate h/2. This Poisson process is the time-conti-
nous limit of the Bernoulli mutation process act-
ing in the time-discrete model. The coalescent
with mutation turned out to be a breakthrough
in population genetics. For example, it led to
a simple proof of the well-known Ewens samp-
ling formula. Furthermore, in biological statistics
it is extensively used to estimate the mutation
rate h.

Tracing back the ancestry of a sample of
n genes in diploid or two-sex populations is
indeed more complicated as genes chosen within
an individual have another probability to have
a common ancestor than genes belonging to
di!erent individuals or di!erent couples. Never-
theless, under weak and realistic assump-
tions*after going backward in time a "nite
number of generations*the ancestral genes be-
long to di!erent couples. From this generation
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on the ancestral tree looks again like a coalescent.
Thus, Kingman's assumption that the population
has to be haploid is not essential and the coales-
cent theory was extended successfully to diploid
and two-sex population models.

Besides the mutation rate h several other para-
meters have been introduced to describe more
complex population models. For example, the
mechanism of reproduction in diploid plant
populations often involves a mixture of self-
fertilization and random mating. This is usually
modelled by the assumption that with some
probability s (the sel"ng rate) an individual is the
o!spring of a self-fertilization and with probabil-
ity 1!s it is the o!spring of a random mating.
The coalescent theory has been extended to such
population models in order to estimate simulta-
neously the mutation rate h and the sel"ng rate
s using approaches mostly based on frequency
data or DNA sequence data.

In many cases, the population is not panmictic,
for example it can be subdivided into several
regions (colonies) due to geographic structure.
Such populations can be modelled via subpopula-
tion size parameters c

i
and migration para-

meters m
ij

controlling the migration between the
colonies i and j. Under certain conditions on
these migration parameters which essentially say
that migration is rare in the sense that the m

ij
are

of order 1/c(N), the ancestry of a sample of genes
chosen from such a subdivided population can be
approximated via the so-called structured coale-
scent, a generalization of Kingman's coalescent.
It keeps track of the location of the ancestors of
the sample at each time. The generator of this
structured coalescent process is described via the
subpopulation size parameters c

i
and the scaled

migration parameters M
ij
:"lim

N?=
m

ij
/c(N).

Populations with recombination have for
example been modelled assuming that a gene,
thought of as a length of DNA, is represented
by the unit interval [0, 1]. In the discrete
Wright}Fisher model with probability 1!r
a gene chooses one parental gene and with prob-
ability r two parental genes, when a recombina-
tion event occurs. In case of a recombination
a break point position Z in the unit interval is
chosen according to some probability measure
and the gene is formed by combining the parts
[0, Z] and (Z, 1] from the "rst and the second
parental gene. In most applications, Z has a dis-
crete uniform distribution taking the values
1/m,2, (m!1)/m which leads to an m-locus
model, but also continuous distributions of Z are
important. It is assumed that o"lim

N?=
r/c(N )

exists. The parameter o is called the recombina-
tion rate. In the limit NPR looking backward
in time besides the usual mergers of ancestral
lines also branches appear corresponding to a re-
combination event. The number of ancestors of
the sample backward in time is a birth and death
process with rates k

k
"k (k!1)/2 and j

k
"ko/2.

This limit process is called the coalescent with
recombination. The genealogy of the sample is
embedded in a graph with a coalescing and
branching structure. This graph is called the
&&ancestral recombination graph''. In a (at "rst
glance) similar way an &&ancestral selection
graph'' has been introduced in order to discuss
population models evolving according to ran-
dom reproduction with selection (and mutation).
Here a continuous Moran model has been
studied extensively, but it is mentioned that the
results should not depend on the particular
model. For simplicity, focus on a single locus
having a "nite number of possible types (alleles)
1,2,K. The K allele model with selection and
mutation can be modelled introducing the fol-
lowing three sets of parameters.

1. An individual of type i3M1,2,KN gives
birth to a new o!spring with rate j

i
,

2. this o!spring is a mutant with probability
p
N
(i) and

3. given that the o!spring is a mutant,
a transition from type i to j occurs with
probability c

ij
.

Without loss of generality, assume that j
1
)

j
2
)2)j

K
, i.e. the type i#1 has a selective

advantage in comparison to the type i such that
s
N
(i ) de"ned by

j
i
"j

1
(1#s

N
(i )), i3M2,2, NN

satis"es s
N
(i )*0. For this situation the following

convergence theorem is available. If j
1
"N/2,

Ns
N
(i )Pp

i
and if Np

N
(i)Ph

i
with a rate higher

than some negative power of N, then as N
tends to in"nity a coalescing, branching object is
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obtained called the &&ancestral selection graph''.
In the limit mutations occur with rate h

i
/2 on the

branches and the types change according to the
mutation transition probability matrix C"(c

ij
).

The proof of Krone & Neuhauser (1997a, b) for
this convergence result uses the concept of dual-
ity which is a well known tool to analyse pro-
cesses in the theory of interacting particle systems
(Liggett, 1985).

Kingman's coalescent theory was mainly de-
veloped for populations of constant size. It has
been also extended to the case of deterministi-
cally changing population size in which all the
generations are assumed to be large. More pre-
cisely, let N :"M

0
denote the population size of

the current generation and for r"1, 2,2 let
M

r
"M

r
(N) denote the population size r genera-

tions backward in time, i.e. M
r~1

"+Mr

i/1
l(r)
i

.
A convergence theorem similar to Theorem 3.1 is
available which ensures that (RqN(t))t*0

converges
weakly to the n-coalescent, where q

N
is a properly

chosen integer-valued time-scaling function. The
limit condition of Theorem 3.1 generalizes to

lim
N?=

qN(t)
+

r/1

cq"t ∀t*0, (9)

where

c
r
:"

1

(M
r~1

)
2

Mr

+

i/1

E((l(r)
i

)
2
)

is the coalescence probability in generation r,
i.e. the probability that two individuals, chosen
randomly without replacement from generation
r!1, have a common ancestor in generation r.
For the constant population size case the time-
scaling function is given by q

N
(t)"[t/c(N)] and

eqn (9) reduces to the limit condition of Theorem
3.1. It remains open to derive a generalization of
Theorem 3.2 for the variable population size case.
Another open and very challenging question is
to study models with random population size
and in this context connections and di!erences to
branching processes.

5. Convergence to the General Coalescent

In this last section the author wants to intro-
duce the general n-coalescent. In order to make
things easy we go back to the simple haploid
models without any biological forces like muta-
tion, recombination or selection. Convergence to
Kingman's coalescent takes place if and only if
condition (7) is satis"ed. We will see in this sec-
tion that this condition is not always satis"ed, for
example when some of the o!spring variables
l
i
tend to be large in the sense that some of them

have the same order as the total population size
N. Biological examples for populations where the
ancestral structure might di!er from Kingman's
coalescent are "sh populations or populations
with arti"cial insemination.

From eqn (3) it follows that there exists a
global constant ¸ such that EP

N
!IE/c(N))¸

for all su$ciently large N, where P
N

denotes as
before the transition matrix of the ancestral pro-
cess. Thus, there exists a subsequence (N

k
)
k|N

with
lim

k?=
N

k
"R such that c :"lim

k?=
c(N

k
) exists

and such that

Q"(qmg )m,g|En
:" lim

k?=

P
Nk
!I

c (N
k
)

(10)

exists. Further, qmg"0 for m-/ g, qmg3[0, 1] for
mLg and qmm"!+gOm qmg . If c'0 then the
"nite-dimensional distributions of the process
(R

r
)
r|N0

converge as kPR to those of a discrete
time Markov process (R

r
)
r|N0

with initial state
R

0
"D and transition matrix I#cQ.
Assume now that c"0. Then the process

(R
*t@c(Nk)+

)
t*0

converges as kPR weakly in
DE

n
([0, R)) to a time-continuous Markov process

(R
t
)
t*0

with initial state R
0
"D and transition

matrix etQ. The matrix Q is equal to the generator
of the n-coalescent if and only if eqn (7) is
satis"ed.

In what follows, the so-called method of mix-
ing is used to construct a population model,
where the limit-process is not equal to the
n-coalescent. The basic idea is to mix two popula-
tion models in a certain way. First, the two popu-
lation models are described. Then the mixing
procedure is explained.

5.1. MODEL 1

Assume that each individual has N o!spring
with probability 1/N and no o!spring with prob-
ability 1!1/N. The coalescence probability for
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this simple model is just c(1)"1 and the
transition matrix of the ancestral process is
given by

P(1)"A
1

0 F
1 B .

Thus, the in"nitesimal generator of this model
has the form

Q(1)"P(1)!I"A
!1 1

} F
!1 1

0 B .

5.2. MODEL 2

This population model is even more simple.
Assume that each individual has exactly one o!-
spring, i.e. l

1
,1. Then the coalescence probabil-

ity is given by c(2)"0 and the transition matrix
P(2)"I is the identity.

The idea is now to mix these two independent
models with some probability p, i.e. in each gen-
eration with probability p reproduction occurs
according to the "rst model and with probability
1!p the population evolves according to the
other model. For our purpose a good choice for
p is p :"1/N. This ends up in a population model
with coalescence probability c (N)"pc(1)#
(1!p)c(2)"p, backward transition matrix P

N
"

pP(1)#(1!p)P(2)"p(P(1)!I)#I and gener-
ator Q :"lim

N?=
(P

N
!I )/c(N)"P(1)!I"Q(1).

This matrix Q is obviously not equal to the gener-
ator of Kingman's coalescent given by eqn (4).
The transition matrix of the limit process has the
form

P(t)"A
e~t 1!e~t

} F
e~t 1!e~t

1 B ,

which corresponds obviously to a star-shaped
ancestral tree and not to Kingman's coalescent
process.

Obviously, the set of all possible Q's arising
in eqn (10) is convex, i.e. if one chooses two
population models with corresponding gener-
ators Q

1
and Q

2
, respectively, then for each

p3[0, 1] there exists a (mixed) population model
with corresponding generator pQ

1
#(1!p)Q

2
.

In MoK hle & Sagitov (1999a) a full classi"cation of
all possible generators Q is given as follows. The
limit Q"lim

N?=
(P

N
!I)/c

N
exists if and only if

the limits

/
a
(b

1
,2, b

a
) :" lim

N?=

E((l
1
)b

1
2(l

a
)
ba
)

Nb1#2#b
a
!ac (N)

,

1)a)b :"b
1
#2#b

a
)n exist and in this

case Q has the entries

qmg :"G
!+b~1

i/1
i/

i
(2, 1,2, 1), if m"g,

/
a
(b

1
,2, b

a
), if mLg,

0, otherwise,

where the connection between the equivalence
relations m and g and the integers a, b, b

1
,2, b

a
is

given at the end of Section 2. The process corre-
sponding to this generator is called the general
coalescent. It allows for simultaneous multiple
mergers of ancestral lines. The sub-class of the
processes with multiple mergers of ancestral lines
has been studied in more detail by Pitman (1999)
and Schweinsberg (1999). Recently, Schweinsberg
(2000) discussed also coalescent processes with
simultaneous multiple collisions and &&in"nite''
sample size.
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