
Mathematical theory of
population genetics

course material, fall 2012

Department of Mathematics and Statistics
Faculty of Science

University of Helsinki
Finland



Contents
1 Elementary population genetics 1

1.1 The Hardy-Weinberg Law . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to Quantitative Genetics concepts . . . . . . . . . . . . . 2
1.3 Selection at a single locus . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Migration and selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Mutation and selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Two loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.2 Selection model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Introduction to Coalescent Theory 16
2.1 Random genetic drift in Wright-Fisher and Moran models . . . . . . . 16

2.1.1 The Wright-Fisher model . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 The Moran model . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 The standard coalescent model . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Wright-Fisher model derivation . . . . . . . . . . . . . . . . . . 22
2.2.2 Moran model derivation . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 The n-coalescent . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 Some properties of coalescent genealogies . . . . . . . . . . . . . 26
2.2.5 Human-Neanderthal couples? . . . . . . . . . . . . . . . . . . . 27

References 30

2



1 Elementary population genetics

In this Chapter we give basic concepts of population genetics. This chapter follows
largely the book by Bürger (2000).

1.1 The Hardy-Weinberg Law

Two alleles

Consider a population with discrete and non-overlapping generations. Suppose that in-
dividuals mate at random and that either genotype frequencies in both sexes are iden-
tical or that every individual has both male and female organs (monoecious species,
e.g. corn, pine).

Let’s denote with P, 2Q and R the relative frequencies (i.e. P + 2Q + R = 1)
of the three genotypes A1A1, A1A2 and A2A2. We additionally assume, that 2Q is a
combined frequency of A1A2 and A2A1, and that the population is large so that the
relative frequencies of alleles and genotypes can be identified with probability.

Knowing the genotype frequencies in one generation we want to calculate the
frequencies of the next generation. This can be done by calculating frequencies of all
matings and their offspring. For example, the probability of the mating A1A1×A1A2

is 4PQ, because both genotypes can be either male or female. Table summarizes all
the possibilities.

Table 1: mating table

Mating Mating prob. Cond. prob. progeny
(A1A1, A1A2, A2A2)

A1A1 × A1A1 P 2 (1, 0, 0)
A1A1 × A1A2 4PQ (1

2
, 1

2
, 0)

A1A1 × A2A2 2PR (0, 1, 0)
A1A2 × A1A2 4Q2 (1

4
, 1

2
, 1

4
)

A1A2 × A2A2 4QR (0, 1
2
, 1

2
)

A2A2 × A2A2 R2 (0, 0, 1)

Therefore, the frequencies of A1A1, A1A2 and A2, A2 in the next generation are
P ′ = (P + Q)2, 2Q′ = 2(P + Q)(Q + R) and R′ = (Q + R)2, respectively (assuming
that no evolutionary forces change the frequencies; prime denotes the next genera-
tion). Using the derived recurrence equations and the fact that P + 2Q + R = 1, we
obtain after another generation of random mating

1



2 1 ELEMENTARY POPULATION GENETICS

P ′′ = (P ′ +Q′)2 = (P +Q)2 = P ′ (1.1.1)
Q′′ = Q′ (1.1.2)
R′′ = R′. (1.1.3)

The genotype frequencies are thus maintained in all subsequent generations after
one generation of random mating.

Denoting with p and q = 1− p the frequencies of the alleles A1 and A2, we obtain
a relation

P ′ = p2, 2Q′ = 2pq, R′ = q2. (1.1.4)

These are the Hardy-Weinberg proportions. The HW law states that after one
generation of random mating the genotype frequencies remain the same and can be
expressed in terms of the allele frequencies according to (1.1.4). Importantly, as allele
frequencies remain constant, this shows that no genetic variability is lost by random
mating (Discuss. Why would genetic variation be lost?).

Exercise 2.1 Derive the frequency of a genotype AiAj, where i, j = 1, 2, when con-
sidering separate sexes (males and females) having different initial frequencies.

k alleles

Suppose there are k alleles in the population.

Exercise 2.2 Derive the frequency of a genotype AiAj, where i, j = 1 . . . k.

1.2 Introduction to Quantitative Genetics concepts

To appear soon..

1.3 Selection at a single locus

Asexual haploid populations: a demonstration

By considering a simple genetical underpinning of an individual, this subsection sets
up the core idea how selection models are being build. Consider one locus and k
alleles A1, . . . , Ak of an asexually reproducing haploid population (i.e. offspring have
the same genotype as the parent, were the genotype of an individual is characterized
by the one allele it carries).

Of our focal interest is to study the spread of genes under selection, and conse-
quently, how selection shapes the whole genetic distribution as time goes by. Therefore,
we introduce the concept of fitness, which is a product of viability (the probability
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that an offspring survives to reproductive age; this is the phase of a life-cycle were
(ecological) selection acts on the individual), mating success and fertility. In essence,
if individuals fitness is greater than one, that is, the individual replaces itself with
more than one offspring (individual who carries copies of his genes), then his genes
are able to spread to further generations. More precise fitness definitions are given in
the section diploid populations.

Let us denote the fitness of individuals carrying allele Ai with Wi. The frequency
of allele Ai is denoted with pi, such that

∑
i pi = 1. Let ni denote the number (or

more precisely, the density) of individuals of type Ai, and let N =
∑

i ni denote the
total population density. Then, the density of Ai in the next generation is n′i = Wini
and the frequency is p′i = n′i/N

′, which implies

p′i = pi
Wi

W̄
, (1.3.1)

where W̄ =
∑

jWjpj is the mean fitness of the population. If pi(0) is the initial
frequency of Ai, then the solution of (1.3.1) is

pi(t) =
pi(0)W t

i∑
j pj(0)W t

j

, i = 1, . . . , k. (1.3.2)

Having now the solution to the dynamical equation (1.3.1), we can investigate
the evolutionary outcome (by letting time go to infinity). Suppose, that allele A1 has
higher fitness than every other allele (we can for instance relabel the alleles such that
A1 is the fittest, i.e. W1 > Wj ∀j 6= 1). Then (Wj/W1)t → 0 for j ≥ 2 as t → ∞,
and by writing the solution (1.3.2) for i = 1 and dividing numerator and denominator
with (W1)t, we have

p1(t) =
p1(0)(W1/W1)t∑
j pj(0)(Wj/W1)t

= p1(0)
1

1 +
∑

j≥2 pj(0)(Wj/W1)t
(1.3.3)

which goes to 1 as t → ∞ provided 0 < p1(0). Therefore, the fittest allele A1 will go
to fixation and all the other alleles will be lost.

Diploid populations

Let us consider diploid sexually reproducing population with discrete and non-overlapping
generations. Assume that population mates at random, and that genotype frequencies
are the same in both sexes (considering either monoecious individuals, or dioecious
with the same viabilities in both sexes and the same sex ratio in all matings). Con-
sider one (autosomal) locus with k alleles A1, . . . , Ak, and denote with Pij the ordered
frequency of a newborn offspring (zygote) AiAj. Frequency Pij is called an ordered fre-
quency, when the order of the indices matters (in general, Pij 6= Pji). Since genotype
frequencies are the same in both sexes, we have that the frequency of heterozygotes
AiAj is Pij + Pji = 2Pij. The frequency of the allele Ai is thus
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pi =
∑
j

Pij. (1.3.4)

Since mating is random, the alleles in the "mating" pool are combined at random
to form zygotes and we have that the genotype frequencies are in Hardy-Weinberg
proportions (see section 1.1). Denote with Vij the viability of an individual AiAj. The
frequency of type AiAj after (ecological) selection (i.e. before mating) is thus

P ∗ij =
VijPij
V̄

=
Vijpipj
V̄

, (1.3.5)

where

V̄ =
∑
i,j

VijPij =
∑
i,j

Vijpipj =
∑
i

Vipi (1.3.6)

is the mean viability and
Vi =

∑
j

Vijpj. (1.3.7)

The frequency of allele Ai after selection is hence p∗i =
∑

j P
∗
ij = Vipi/V̄ . Because of

the random mating assumptions (in particular, all the matings are equally likely and
result in producing the same number of offspring), the allele frequency in the next
generation p′i among zygotes is also p∗i (see section 1.1). This results in the selection
equation

p′i = pi
Vi
V̄

for i = 1, . . . , k, (1.3.8)

which describes the evolution of allele frequencies at a single autosomal locus in diploid
populations when the individuals face selective forces.

Note, that the dynamical equation can be expressed in terms of the viabilities Vij.
This is because all the matings are assumed equally likely and that if successful they
result in the same number of offspring. Indeed, if Vij is multiplied by the same constant
(e.g. the product of the mating success and the expected number of offspring) the
equation (1.3.8) remains the same. Now, it is often convenient to introduce a scaling
that, for example, sets the highest fitness value to 1 (by dividing all the fitnesses by
the highest fitness value). Therefore, instead of representing the selection in terms
of viabilities or absolute fitness (i.e. expected number of progeny of individuals of a
given genotype; previously called plainly fitness), we give it in terms of relative fitness
Wij which is defined as a ratio of the absolute fitness of an individual AiAj a3nd
the absolute fitness of a reference individual. Therefore, we may write the selection
equation as

p′i = pi
Wi

W̄
for i = 1, . . . , k, (1.3.9)
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where Wi =
∑

jWijpj is called the marginal fitness of the allele Ai (and where Wij is
the relative fitness of AiAj) .

Exercise 3.1. The selection equation (1.3.8) can also be derived by explicitly writing
out the mating process (using for example a mating table as in the section 1.1) and
by assuming equal mating probability and expected number of offspring for all the
mating pairs. Mating is assumed to happen after the phase of selection and hence the
frequency of AiAj during the mating season is given by (1.3.5).

Let us denote with P ∗klQij,kl the probability that a female (male) AiAj mates with a
male (female) of type AkAl (for example, Qij,kl may denote the probability of mating
given that individual of type AiAj has encountered AkAl; however, in general, the
interpretation of Q can be more complex, and it is only the multiplication P ∗Q which
gives a probability). Further, let us denote with Fij,kl the expected number of offspring
of a couple AiAj, AkAl and denote with Rij,kl→mn the (Mendelian) probability that
parents AiAj and AkAl produce offspring of type AmAn. Then, for example, the
expected number of offspring produced by a female AiAj with a male AkAl is simply
P ∗klQij,klFij,kl.

Also, note that Qij,kl = Qij,lk (doesn’t matter from which parent the allele is in-
herited, applies also to Fij,kl), but in general Qij,kl 6= Qkl,ij.

(a) What is the expected number of offspring of type AmAn produced by a female
AiAj with a male AkAl?

(b) What is the total expected number of offspring produced by a female AiAj?

(c) What is the total expected number of offspring of type AmAn produced by a
female AiAj?

(d) What is the frequency of genotype AmAn in the next generation? (Remember
to normalize so that frequencies add up to 1 !)

Now, consider two alleles A1 and A2.

(e) Write out the genotype frequencies of the next generation, P ′11, 2P
′
12, P

′
22.

(f) Suppose that all the encounters are equally likely to end up in mating and that
all matings result in equal number of offspring, that is, suppose that Q = Qij,kl and
F = Fij,kl for all i, j, k, l. Show that the selection equation (1.3.8) is recovered.
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Two alleles

Let us consider two alleles A1 and A2, with frequencies p1 = p, p2 = 1−p, respectively.
Suppose that the relative fitnesses are

W11 = 1, W12 = 1− hs and W22 = 1− s, (1.3.10)

where s says how strong is the selective disadvantage of homozygotes A2A2 compared
to the homozygotes A1A1, and h describes the degree of dominance. To be continued.

Protected coexistence of two alleles

In this section we give a sufficient condition for the coexistence of two alleles, and use
selection models as an example. Note, however, that the notion of protected coexis-
tence is general and is not restricted two this section.

Allele Ai (i = 1, 2) is said to protected if it can increase in frequency when rare.
Let’s formalize this concept. In the Appendix, we give conditions under which the
stability of an equilibrium in a discrete-time dynamical system can be determined by
finding the dominant eigenvalue. Then, if the dominant eigenvalue λD of the Jacobian
of the system evaluated at the equilibrium satisfy

|λD| > 1 (1.3.11)

the equilibrium is unstable and if
|λD| < 1 (1.3.12)

the equilibrium is asymptotically stable. Applying this, we say that allele Ai is pro-
tected if |λD| > 1 evaluated at pi = 0, where i = 1, 2.

As the selection equation (1.3.9) with two alleles A1 and A2 can be reduced to a
one-dimensional system we have that allele A1 is protected when[∂p′

∂p

]
p=0

=
[W1

W̄

]
p=0

+ 0 =
W12

W22

> 1, (1.3.13)

where p = p1. Similarly, allele A2 is protected if W12

W11
> 1. Now, if both alleles can

increase in frequency when rare (i.e. they can not get extinct unless some exterior fac-
tors not described in the system cause the extinction), then the alleles must coexist
in the interior of the population state space (0 < p < 1). If this is the case, alleles are
said to be in protected coexistence.

Exercise 4.2. Suppose that the viability selection is frequency-dependent, Vij =
Vij(p), i, j = 1, 2. What is the condition for protected coexistence of A1 and A2?

1.4 Migration and selection

This section is based on Chapter 6.2. in Nagylaki (1992) as edited in Bürger (2010).
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The migration-selection model

We assume that population is subdivided intoM demes (i.e. isolated subpopulations).
Within each deme selection acts through differential viabilities. After selection adults
migrate, and after migration random mating occurs within each deme.

We consider a single locus with k alleles A1, . . . , Ak. Throughout, we use letters i, j
to denote alleles, and greek letters α, β to denote demes. We write G = {1, . . . ,M}
for the set of all demes. We denote with pi,α the frequency of allele Ai in deme α, so
that we have ∑

i

pi,α = 1 (1.4.1)

for every α ∈ G. As each deme might experience different environmental conditions
and hence selection may vary among demes, the viability Wij,α of an AiAj individual
in deme α may depend on α. The (marginal) viability of allele Ai in deme α and the
mean fitness of α are

Wi,α =
∑
j

Wij,αpj,α and W̄α =
∑
i,j

Wij,αpi,αpj,α, (1.4.2)

respectively.
Let us now describe migration. Let m̃αβ denote the probability that an individual

in deme α migrates to deme β, and let mαβ denote the probability that an individual
in deme α immigrated from deme β. The M ×M matrices

Γ̃ = (m̃αβ) and Γ = (mαβ) (1.4.3)

are called the forward and backward matrices, respectively. Both matrices are
stochastic, i.e. they are non-negative and satisfy∑

β

m̃αβ = 1 and
∑
β

mαβ = 1 (1.4.4)

for every α. Given the backward migration matrix and the fact that random mating
does not change the allele frequencies, the allele frequencies in the next generation are

p′i,α =
∑
β

mαβp
∗
i,β, (1.4.5a)

where
p∗i,α = pi,α

Wi,α

W̄α

(1.4.5b)

describes the change due to selection alone. Substituting we obtain the migration-
selection equation

p′i,α =
∑
β

pi,β
Wi,β

W̄β

mαβ. (1.4.6)
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The recursion (1.4.6) requires that the backward migration rates are known. As
it might be difficult to obtain the knowledge of an individuals origin, we derive a
relation between backward and forward migration rates. To this aim, we describe the
life-cycle explicitly. It starts with zygotes on which selection acts (possibly including
population regulation, i.e. the control of population size, for example, due to limited
size of habitat). After selection adults migrate and there may population regulation
after migration. Finally, there is random mating and reproduction within each deme.
The respective proportions of zygotes, pre-migration adults, post-migration adults,
and post-regulation adults in deme α are cα, c∗α, c0

α and c′α (i.e. c’s give the fraction of
individuals in each deme at different stages of the life-cycle, so we have that at each
point of the cycle the fractions sum up to 1 e.g.

∑
α cα = 1).

Because no individuals are lost during migration, the following must hold:

c0
β =

∑
α

c∗αm̃αβ (1.4.7a)

c∗α =
∑
β

c0
βmβα. (1.4.7b)

The joint probability that an individual is in deme α and migrates to deme β can
be expressed in terms of the forward and backward migration rates as

c∗αm̃αβ = c0
βmβα. (1.4.8)

Substituting (1.4.7a) into (1.4.8), we obtain the desired relation between the for-
ward and backward migration rates

mβα =
c∗αm̃αβ∑
γ c
∗
γm̃γβ

(1.4.9)

Therefore, if Γ̃ is given, an Ansatz for the vector c∗ = (c∗1, . . . , c
∗
M)T in terms of

c = (c1, . . . , cM)T is needed to compute Γ (as well as a hyphotesis for the variation, if
any, of c).

Two frequently used assumptions are the following.

1) Soft selection. The fraction of adults in every deme is fixed, i.e.,

c∗α = cα for every α ∈ G. (1.4.10)

This may be a good approximation if the population is regulated within each deme,
e.g. because individuals compete for resources locally.

2) Hard selection. Following Dempster (1955), the fraction of adults will be pro-
portional to mean fitness in the deme if the total population size is regulated. This is
defined by
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c∗α = cα
W̄α

W̄
, (1.4.11)

where

W̄ =
∑
α

cαW̄α (1.4.12)

is the mean fitness of the total population.
These two assumptions are at the extremes of a broad spectrum of possibilities.

Soft selection will apply to plants; for animals many schemes are possible.

A migration pattern that does not change deme proportions (c0
α = c∗α) is called con-

servative.

1.5 Mutation and selection

This section is based on Chapters I.6 and III in Bürger (2010).

Natural selection and mutation are two central factors guiding biological evolution:
mutation generates the genetics variability upon which selection can act. The relation
between these two processes is the topic of this section.

Pure mutation model

Firstly, we assume all mutations to be neutral, i.e. all genotypes have the same fitness.
Let us consider k alleles A1, . . . , Ak and label their frequencies with p1, . . . , pk.

For i 6= j we denote the probability that an Ai has an Aj as an offspring by the
mutation rate µij. We shall use the convention µii = 0. Then the probability that Ai
allele does not mutate is 1 −

∑
j µij, and µji gives the probability that Aj gives rise

to a mutant Ai. Therefore, the frequency of Ai in the next generation is

p′i = pi(1−
∑
j

µij) +
∑
j

pjµji. (1.5.1)

Equation (1.5.1) is called the pure mutation equation.

Result (Bürger 2010) Equation (1.5.1) has a unique equilibrium if all mutation rates
are positive, and the convergence to this equilibrium occurs at a geometric rate.

Let’s demonstrate this result for the case of two alleles.
Example: Consider two alleles A1 and A2 and denote the frequency of A1 with p and
the mutation rates with µ12 = µ and µ21 = ν. The recursion (1.5.1) reduces to

p′ = p(1− µ) + (1− p)ν = p(1− µ− ν) + ν. (1.5.2)
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The equilibrium (p′ = p) is then

p̂ =
ν

µ+ ν
, (1.5.3)

and it exists (i.e is biologically meaningful) when µ, ν > 0. Recursion (1.5.2) can be
solved (a nice little exercise), and using (1.5.3) its solution can be expressed as

p(t)− p̂ = (p0 − p̂)(1− µ− ν)t, (1.5.4)

where p0 = p(0) is the initial frequency of A1. This shows, that for any p0 the solution
converges to the equilibrium at a geometric rate, but it’s slow, because µ+ν is typically
very small.

Mutation-selection equation for haploid populations

In this section we consider a mutation model for haploid populations when selection
is taken into account.

The frequency of Ai after selection is p∗i = pi
Vi
V̄
, where V̄ =

∑
j Vjpj. As mul-

tiplying Vi with a constant doesn’t change the frequencies, we will write p∗i = pi
Wi

W
,

W =
∑

jWjpj, whereWi denotes the relative fitness. After selection reproduction and
mutation occurs and by substituting p∗ to (1.5.1) we obtain the mutation-selection
equation

p′i = pi
Wi

W
+

1

W

∑
j

(pjWjµji − piWiµij). (1.5.5)

Note that this equation applies also for diploid populations when Wi denotes the
marginal fitness of allele Ai (instead of fitness of genotype Ai), and when W defines
the mean fitness for diploid populations.

It is convenient to transform (1.5.5) into a matrix form. Let us define the k × k
mutation matrix Ũ = (ũij) by

ũij =

{
1−

∑
l µil, i = j,

µji, i 6= j,
(1.5.6)

and the mutation-selection matrix C = (cij) by

cij = ũijWj. (1.5.7)

Let p = (p1, . . . , pk)
T , then (Cp)i =

∑
j cijpj and
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c̄ =
∑
i

(Cp)i =
∑
i

(
∑
j

ũijWjpj) (1.5.8)

=
∑
i

(ũi1W1p1 + ũi2W2p2 + · · ·+ ũikWkpk) (1.5.9)

= W1p1

∑
i

ũi1 +W2p2

∑
i

ũi2 + · · ·+Wkpk
∑
i

ũik = W. (1.5.10)

Equation (1.5.5) can be rewritten as

p′ =
1

c̄
Cp. (1.5.11)

The state space (i.e. space of allele frequencies) is the simplex

Sk = {p = (p1, . . . , pk) ∈ Rk :
∑
i

pi = 1, pi ≤ 0, i = 1, . . . , k}. (1.5.12)

Note that Sk is a (k − 1) dimensional convex subset of Rk.
Observing that n(t) = Ctn(0) is the solution of n′ = Cn, and p(t) = n(t)/

∑
i ni(t),

it follows immediately that (1.5.5) has the explicit solution

p(t) =
Ctp0∑
i(Ctp0)i

, (1.5.13)

where p0 = p(0) ∈ Sk is the initial frequency distribution.

Result (Moran 1976) If the matrix C defined in (1.5.7) is primitive, then the mutation-
selection dynamics (1.5.5) admits unique equilibrium, p̂, that satisfies p̂i > 0 for every
i. This equilibrium is the unique solution of

Ŵ p̂ = Cp̂, (1.5.14)

where Ŵ =
∑

iWip̂i is the equilibrium mean fitness, and it is globally asymptotically
stable.

Mutation-selection equation for diploid populations

Assume random mating. As mentioned in the previous section, the mutation-selection
equation for diploid populations has a similar form as for haploid populations, i.e.

p′i = pi
Wi

W
+

1

W

∑
j

(pjWjµji − piWiµij), (1.5.15)

where Wi =
∑

jWijpj is the marginal fitness of the allele Ai and W =
∑

ijWijpipj is
the mean fitness.
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The case of two alleles . Suppose that the relative fitness values of the genotypes
A1A1, A1A2, A2A2 areW11 = 1,W12 = 1−hs,W22 = 1−s. We denote the frequency of
A1 with p. For the mutation rates we write µ = µ12 and ν = µ21, and we assume that
µ+ ν < 1 (this is biologically reasonable, as the mutation rates are usually� 1). The
equilibria can be calculated from (1.5.15) by setting p = p′, and solving the resulting
polynomial of the third order (therefore there might be up to three solutions).

The equilibria solutions have simple expressions only in special cases. We restrict
our attention to the case with no back mutations from the deleterious allele A2 to
A1, that is, we set ν = 0. It is convenient to give the precise formulas in terms of
q = 1− p. Because A1 can’t arise by mutation (ν = 0), then if the population consists
only of A1 it will always remain so, and hence q̂(0) = 1 is always an equilibrium. Since
ν = 0 the above mentioned polynomial reduces to a second order polynomial which,
if 4µ/s ≤ 1, has the following solutions in [0, 1] (Bürger 1983):

q̂(1) =
h(1 + µ)

2(2h− 1)

[
1−

√
1− 4µ(2h− 1)

(1 + µ)2h2s

]
if h 6= 1

2
(1.5.16a)

q̂(1) =
2µ

s(1 + µ)
if h =

1

2
(1.5.16b)

and

q̂(2) =
h(1 + µ)

2(2h− 1)

[
1 +

√
1− 4µ(2h− 1)

(1 + µ)2h2s

]
if hc < h, (1.5.17)

where

hc =
1− µ/s
1− µ

. (1.5.18)

If h < hc, then q̂(2) > 1 and hence biologically not meaningful. In this case (h < hc),
the equilibrium q̂(1) is globally asymptotically stable. If h > hc, then three equilibria
coexist. They satisfy 0 < q̂(1) < q̂(2)q̂(0) = 1, and q̂(1) and q̂(0) are asymptotically stable
whereas q̂(2) is unstable.

Note that for hc ≤ h ≤ 1 the pure selection equation model has only one globally
stable boundary equilibrium q̂ = 0, but, the introduction of mutation, however weak,
leads to two stable and one unstable equilibria, and in particular, the possible coexis-
tence of A1 and A2. Furthermore, note that the diploid mutation-selection dynamics
may be qualitatively different from the haploid dynamics, since in the haploid case,
for example, allele A2 is always protected when µ > 0, ν = 0 (See Exercise 6.3).

Majority of mutations are (slightly) deleterious, and therefore in general, mutations
decrease the mean fitness of a population. This decrease is called the mutation load.
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1.6 Two loci

This section is based on Chapters I.6 and II in Bürger (2010).

1.6.1 Recombination

Consider a diploid randomly mating population with two loci A and B, each having
an arbitrary number of alleles. Let pi denote the frequency of Ai in A, and qj the
frequency of Bj in B. The frequency of a gamete AiBj we denote with Pij, so that we
have pi =

∑
j Pij and qj =

∑
i Pij.

If genes (alleles in two different loci) are associated randomly in a gamete in the sense
that

Pij = piqj, ∀i, j (1.6.1)

is the frequency of AiBj, then the population is said to be in gametic equilibrium (often
also called linkage equilibrium). Otherwise, population is in gametic disequilibrium.
When genes tend to be inherited together due to a close location on a chromosome
there is said to be a linkage. The gametes individuals produce are said to be of parental
type, if they contain the same alleles as the gametes the individuals themselves are
composed of, and recombinant types if the gametes produced are a mix of alleles from
both of the parents. For example, if an individual got from his mother A1B1 and from
father A2B2, then the gametes A1B1 and A2B2 produced are called parental types,
and A2B1 and A1B2 are called recombinant types.

Let us suppose that the proportion of recombinant gametes is r, which we call
recombination fraction (or rate or frequency), and the proportion of parental type is
1−r. When r = 0 loci are completely linked and when r = 1

2
loci are unlinked and the

segregation is independent (typically when loci are on different chromosomes). Thus,
in general, recombination fraction satisfies 0 ≤ r ≤ 1

2
(if r > 1

2
then there are more re-

combinant than parental types, which happens only under very special circumstances).

Let us investigate how the gametic frequencies change from generation to generation
under random mating and with no evolutionary processes (no mutation, selection
etc.). Using the notion of r, we have

P ′ij = (1− r)Pij + rpiqj (1.6.2)

for all i, j. Thus, gene frequencies are conserved (Exercise), but the gamete frequencies
are not (unless r = 0 or unless the population is in gametic equilibrium).

Gametic disequilibrium (GD) between alleles Ai and Bj is measured by the pa-
rameter

Dij = Pij − piqj. (1.6.3)



14 1 ELEMENTARY POPULATION GENETICS

From (1.6.2), (1.6.3) and from the fact that allele frequencies are preserved we get

D′ij = P ′ij − p′iq′j = (1− r)Pij + rpiqj − p′iq′j (1.6.4)
= Pij − p′iq′j − rDij (1.6.5)
= (1− r)Dij, (1.6.6)

and hence
Dij(t) = (1− r)tDij(t). (1.6.7)

Therefore, unless r = 0, gamete disequilibrium decay at the geometric rate 1− r and
gametic equilibrium is approached without oscillation. Note, that even if r = 1

2
the

GE is not reach immediately. Geiringer (1944) showed that the above result holds also
for more than two loci.

Two alleles. Let us label the frequencies ofA1B1, A1B2, A2B1, A2B2 with x1, x2, x2, x4,
respectively. Let D denote the difference between the frequency of coupling genotypes
A1B1/A2B2, and repulsion genotypes A1B2/A2B1, i.e.

D = x1x4 − x2x3. (1.6.8)

We have that D = D11 = −D12 = −D21 = D22 (Exercise). Thus, the recursion
equations for the gamete frequencies (1.6.2) may be rewritten as

x′1 = x1 − rD (1.6.9)
x′2 = x2 + rD (1.6.10)
x′3 = x3 + rD (1.6.11)
x′4 = x4 − rD (1.6.12)

1.6.2 Selection model

Consider two alleles at each locus. Let the fitness of zygotes made up of gametes i
and j be designated by Wij(= Wji), i, j = 1, 2. Assume, that there is no position
effect, i.e. coupling and repulsion heterozygotes (A1B1/A2B2 and A1B2/A2B1) have
the same fitness W14 = W23. Then the fitnesses can be expressed by the single locus
genotypes in the form of a 3× 3 matrix:

A1A1

A1A2

A2A2

B1B1 B1B2 B2B2 W11 W12 W22

W13 W14 W24

W33 W34 W44

 (1.6.13)

Each gamete i has a marginal fitness Wi defined by averaging over all genotypes
containing i, i.e.

Wi =
4∑
j=1

Wijxj, i = 1, . . . , 4. (1.6.14)
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The mean fitness of the population is

W =
∑
ij

Wijxixj =
∑
i

Wixi. (1.6.15)

Applying (1.6.9) we get the two allele - two loci selection equation

x′i =
1

W
[xiWi − ηirW14D] , i = 1, . . . , 4, (1.6.16)

where η1 = η4 = 1, η2 = η3 = −1 and D = x1x4 − x2x3.



16 2 INTRODUCTION TO COALESCENT THEORY

2 Introduction to Coalescent Theory
This section is based on Wakeley (2009) and the references within.

Let us first see how coalescent arises in the context of the most commonly applied
population genetics models, the Wright-Fisher model and the Moran model. It will
be useful to first give forward-time descriptions, and to derive some focal properties.

2.1 Random genetic drift in Wright-Fisher and Moran models

In both models, we will make the following assumptions.

• The population sizeN is constant (when considering haploids this givesN copies
of the genome, when diploids then 2N copies of the genome)

• All individuals are equally fit

• The population has no geographical or social structure (this implies for example
random mating)

• The genes (or sequences) in the population are not recombining

Obviously, above assumption are never met in nature, however, this idealized pop-
ulation is a very useful starting point to build more realistic situations.

2.1.1 The Wright-Fisher model

This model was introduced by Fisher (1930) and Wright (1931). In its simplest version,
and in addition to the above assumptions, it is assumed that the generations are
discrete and non-overlapping, and that the individuals are either haploids or diploids
and monoecious (in this case we just replace N with 2N). For convenience, we will
consider haploids.

Finally, and most importantly, WF-model assumes that the genes in generation
t + 1, where t = 0, 1, . . . , are obtained from the parental genes in generation t with
replacement (this is a good approximation when individuals are assumed to produce
many gametes, so that the proportions of alleles remain constant). After reproduction
all the adults die and a new generation begins. To put it simply, consider a box (la-
beled t) with N balls of different colors (each different color represents, say, a different
allele). There is another box (a next generation box, labeled t + 1), which we fill by
randomly choosing a ball from the box labeled t. After randomly choosing a ball,
we make a copy of the ball (represents the production of an offspring) and put one
ball to the new box labeled t + 1 and the other ball we put back to the box t. This
experiment we repeat N times, so that the next generation box labeled t + 1 has N
balls (population size remains constant).
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Recall some elementary concepts and results from probability theory:

Consider a discrete random variable (r.v.) X that can assume values x1, x2, . . . . The
probability function is given by Pr{X = xi}, and by definition

∞∑
i=1

Pr{X = xi} = 1. (2.1.1)

The expected value of a r.v. X is its expected average over the entire distribution,

E[X] =
∞∑
i=1

xiPr{X = xi}. (2.1.2)

The variance of X is

Var[X] =
∞∑
i=1

(xi − E[X])2Pr{X = xi}. (2.1.3)

Variance is often easier to calculate using the formula

Var[X] = E[X2]− E[X]2. (2.1.4)

Here are some useful rules, where c is a constant:

E[c] = c (2.1.5)
E[cX] = cE[X] (2.1.6)

E[X + c] = E[X] + c (2.1.7)
Var[c] = 0 (2.1.8)

Var[cX] = c2Var[X] (2.1.9)
Var[X + c] = Var[X]. (2.1.10)
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Bernoulli trials and binomial distribution:

Definition. A Bernoulli trial is a random experiment in which there are only two
possible outcomes - success and failure.
Examples of a Bernoulli trial are coin tossing, and, a reproduction event where
random individual (in a population with two alleles A1, A2) will pass on one of the
two alleles to the next generation.
A Bernoulli r.v. X takes the values 0 and 1 and

Pr{X = 1} = p (2.1.11)
Pr{X = 0} = 1− p. (2.1.12)

(for example, r.v. X is the number of A1 alleles passed on to one offspring by a
random individual in a population of two alleles A1 and A2 with frequencies p and
1− p, respectively.)
Binomial experiment. Consider a following random experiment:

• The experiment consists of n Bernoulli trials – each trial has two possible
outcomes labelled as success and failure

• The trials are independent

• The probability of success in each trial is a constant p

Definition. The random variable Y that counts the number of successes, k, in n
trials is said to have a binomial distribution with parameters n and p, written
Binomial(n, p) (or Binomial(k;n, p)= Bin(n, p)= B(n, p) ).

The probability mass function of a binomial r.v. Y with parameters n and p is

f(k) = Pr{Y = k} =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n. (2.1.13)

(
n
k

)
counts the number of outcomes that include exactly k successes and n−k failures.

Consider two alleles A1 and A2. Let i be the number of copies of allele A1, so that
N − i is the number of copies of A2. The frequency of A1 is p = i/N and of A2 is
1− p. This gives

πij =

(
N

j

)
pj(1− p)N−j, j = 0, 1, . . . , N (2.1.14)

for the probability that a gene with i copies in the present generation is found in j
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copies in the next. The πij are called the transition probabilities and the matrix (πij)
is the transition matrix of the associated Markov chain.

Markov chain is a "memoryless" random process: the next step depends only on the
current state and not on the sequence of events that preceded it, i.e.

Pr{Xi+1 = x|X1 = x1, X2 = x2, . . . , Xi = xi} = Pr{Xi+1 = x|Xi = xi}. (2.1.15)

If Kt gives the number of A1 in generation t (say i copies in a population of N genes,
as above,) then Kt+1 is a binomial random variable with parameters N and p = i/N
(and we write Kt+1 ∼ Bin(N, p)).

Knowledge of the transition matrix (πij) allows one to calculate the probability
distribution of Kt for every t if the (in case of not knowing the exact value then the
probability distribution of the) initial state K0 is known, because

Pr{Kt+1 = j} =
N∑
i=0

Pr{Kt = i}πij. (2.1.16)

Sums of random variables. If a r.v. Y is a sum of r.v. Xi, i = 1, . . . , k, i.e. Y =
X1 +X2 + · · ·+Xk =

∑k
i=1 = Xk, then

E[Y ] =
k∑
i=1

E[Xi] (2.1.17)

Var[Y ] =
k∑
i=1

Var[Xi] +
k∑
i=1

∑
j 6=i

Cov[Xi, Xj]. (2.1.18)

If Xi are independent of another, then Cov[Xi, Xj] = 0 and

Var[Y ] =
k∑
i=1

Var[Xi]. (2.1.19)

Let Xm
t be a r.v. of a Bernoulli trial number m, m = 1, . . . , N , so that it takes values

0 and 1. Xm
t = 0 means that at generation t the mth offspring doesn’t get A1 from the

parent generation t−1, and Xm
t = 1 that it does. Lets denote with p the frequency of

A1 in the parent generation (the probability that Xm
t = 1). The mean and variance
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of each Xm
t are

E[Xm
t ] =

1∑
j=0

xjPr{Xm
t = xj} = 0 · (1− p) + 1 · p = p (2.1.20)

Var[Xm
t ] = p(1− p) (2.1.21)

We have Kt =
∑N

m=1X
m
t . Let K0 = i (the number of A1 at t = 0) so that p0 = i/N .

Then

E[K1] =
N∑
m=1

E[Xm
1 ] =

N∑
m=1

p0 = Np0 (2.1.22)

Var[K1] =
N∑
m=1

Var[Xm
1 ] =

N∑
m=1

p0(1− p0) = Np0(1− p0). (2.1.23)

In fact, if we don’t know the initial state K0 with certainty (we only know its distri-
bution), we get E[K1] = E[K0]. It can also be shown that (Exercise)

E[Kt+1] = E[Kt] = · · · = E[K0]. (2.1.24)

Definition. The heterozygosity of a population is defined to be the probability that
two randomly sampled gene copies are different.

For a randomly mating diploid, this is the probability that an individual is a
heterozygote).

Let p0 be the frequency of A1 at generation t = 0 (as above). The heterozygosity
at t = 0 is

H0 = 2p0(1− p0). (2.1.25)

Le the r.v. P1 represent the frequency of A1 at t = 1. Then

H1 = 2P1(1− P1). (2.1.26)

Note, thatH1 will vary depending on the (random) realization of the process of genetic
drift described by (2.1.14). On average

E[H1] = H0(1− 1

N
) (2.1.27)

(Exercise). We get

E[Ht] = H0(1− 1

N
)t. (2.1.28)

The random genetic drift hence eliminates all the heterozygosity from the population
(E[Ht] → 0 as t goes to infinity). This implies that one of the alleles becomes fixed
(and the other will go extinct). The decrease of heterozygosity is a common measure
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of genetic drift, and we say that the drift occurs in the Wright-Fisher model at rate 1
N

(unit of time is a generation). For large N the heterozygosity decreases exponentially,
since

E[Ht] = H0(1− 1

N
)t ≈ H0e

− t
N . (2.1.29)

2.1.2 The Moran model

This model was introduced by Moran (1958, 1962). It contrasts the model of Wright-
Fisher by assuming overlapping generations. Also, we consider only haploid individu-
als.

In the Moran model, at times t = 0, 1, 2, . . . , a random individual is chosen for
reproduction and a random individual is chosen for death. These might be the same
individuals or not (in some versions of a Moran model they are not allowed to be the
same).

Let the population size be N , and let there be i copies of A1 and N − i copies
of A2. The number of copies j of A1 in the next generation can assume only three
possible values: i− 1, i, i+ 1. Using p = i/N gives

πij =


p(1− p) if j = i+ 1
(1− p)p if j = i− 1
p2 + (1− p)2 if j = i
0 otherwise

For example, the probability that i increases is equal to the probability an A2 is chosen
to die and A1 to reproduce.

If K0 = i, then with i = Np0 :

E[K1] = (Np0 − 1) · p0(1− p0) +Np0 · (p2
0 + (1− p0)2)+ (2.1.30)

+ (Np0 + 1) · p0(1− p0) = Np0 (2.1.31)
Var[K1] = 2p0(1− p0) (2.1.32)

(Exercise). Moreover, having H0 = 2p0(1− p0), then

E[H1] = H0(1− 2

N2
) (2.1.33)

and hence
E[Ht] = H0(1− 2

N2
)t. (2.1.34)

For large N we have
E[Ht] ≈ H0e

− 2t
N2 . (2.1.35)

The rate of genetic drift is then 2/N2. Note, however, that the time units have a
different interpretation than in the WF-model. In WF at each t all the adults die, in
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Moran only one. To make the time comparable, we define the generation in Moran
model as Nt (N death events as in WF), and by scaling time τ = t/N we obtain

E[Ht] ≈ H0e
− 2τ
N . (2.1.36)

The Moran model has twice as high rate of genetic drift as WF (later we see why).
However, the decay of heterozygosity is in both models exponential.

2.2 The standard coalescent model

In this section we derive the simplest statements of the coalescent model first given
in Kingman (1982a, 1982b, 1982c). We begin by deriving the ancestral process of the
Wirght-Fisher and the Moran model and then generalize the results.

2.2.1 Wright-Fisher model derivation

Kingman proved for the WF-model that the coalescent process (precise definition
comes later) describes the ancestral genetic process for a sample of fixed size n in
the limit as the population size N →∞. In particular, he showed that the coalescent
times Ti are (mutually) independent and exponentially distributed. Coalescent time
Ti is a random variable which gives the time during which there are exactly i lineages
(ancestral to the sample).

Discrete-time coalescent: sample of two genes (n=2). What is the distribution
of the waiting time until the most recent common ancestor (MRCA) of two genes
sampled from N genes?

Note that we will talk about haploid individuals, but similar calculations hold for
diploid monoecious populations.

The probability that two genes find a common ancestor in the first generation back
in time is

1

N
(2.2.1)

and the probability that two genes have different ancestors is 1 − 1
N
. Since sampling

in different generations is independent from each other, the probability to have a
common ancestor k generations ago is

(1− 1

N
)k−1 1

N
. (2.2.2)

Thus, the coalescent time T2 for two genes to find a MRCA is distributed as

Pr{T2 = k} =

(
1− 1

N

)k−1
1

N
, k = 1, 2, . . . (2.2.3)
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As T2 is geometrically distributed with parameter p = 1
N
, we get for the expected

waiting time (until MRCA)

E[T2] =
1

p
=

1

1/N
= N. (2.2.4)

(see also Exercises). The expected time until MRCA is the same as number of genes
in the population.
Discrete-time coalescent: sample of n genes. Assume for the moment that N is
not necessarily large. Our aim is to derive an expression for a (transition) probability
that in a single generation i lineages are descended from j ancestors. This can be
thought of as tossing i balls randomly with replacement into N boxes. Whenever
balls end up in the same box, they share an ancestor ("with replacement" refers to
the fact that the same individual can be a parent to multiple offspring). The single
generation transition probability is

Gi,j =
N

N

N − 1

N

N − 2

N
· · · N − j + 1

N︸ ︷︷ ︸
j different ancestors

· 1

N

1

N
· · · 1

N︸ ︷︷ ︸
i− j common ancestors

· S
(j)
i︸︷︷︸

Stirling number

=
S

(j)
i N[j]

N i
,

(2.2.5)
in which N[j] = N(N − 1) . . . (N − j + 1) and S(j)

i are Striling numbers of the second
kind (# of ways i elements can be partitioned into j subsets). Stirling number can be
generated recursively using S(1)

i = 1 and

S
(j)
i = S

(j−1)
i−1 + jS

(j)
i−1, j = 2, 3, . . . , i− 1 (2.2.6)

and with S(i)
i = 1. Useful special case is

S
(i−1)
i =

(
i

2

)
=
i(i− 1)

2
. (2.2.7)

From (2.2.5) we see that all the transitions have a positive probability (for j =
1, . . . , i). However, Kingmans coalescent admits only j = i and j = i − 1, that is,
at most two out of the i lineages share a common ancestor. Next we show that this is
the case for WF when N →∞.

The probability that i lineages have i (distinct) ancestors is

Gi,i =
N

N

N − 1

N

N − 2

N
· · · N − i+ 1

N
(2.2.8)

= (1− 1

N
)(1− 2

N
) . . . (1− i− 1

N
) (2.2.9)

= 1−
i−1∑
j=1

j

N
+O(

1

N2
) (2.2.10)
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and the probability that i lineages have i− 1 ancestors is

Gi,i−1 =
N

N

N − 1

N

N − 2

N
· · · N − i+ 2

N

1

N

(
i

2

)
(2.2.11)

= (1− 1

N
)(1− 2

N
) . . . (1− i− 2

N
)

1

N

(
i

2

)
(2.2.12)

=
i−1∑
j=1

j

N
+O(

1

N2
) (2.2.13)

Note, that all other Gi,j with j < i− 1 are O( 1
N2 ) (Exercise).

Thus, as N becomes larger and larger, the ancestral process for i lineages becomes
like a series of Bernoulli trials with a constant probability Gi,i−1 = i(i−1)

2N
each gener-

ation of success. Success in this case means that a single pair of lineages coalesces.

In consequence, the probability that two genes out of i genes find a common
ancestor Ti = k, k = 1, 2, . . . , generations ago is

Pr{Ti = k} = (1−
(
i

2

)
1

N
)k−1

(
i

2

)
1

N
(2.2.14)

and Ti has approximately a geometric distribution with parameter
(
i
2

)
1
N
.

We have that times Ti are independent and geometrically distributed. The goal
was, however, to show that they are exponentially distributed as N →∞. To do this,
we need to measure time differently.

Suppose that time t is measured in many steps (for example, in N generations
instead of just one generation). Now, consider much smaller time-step τ = δt, where
δ is a very small number. For a very small δ, τ can be seen as a continuous time
approximation. From e−x ≈ 1−x, when x is small, we get that (1−λδt)t/ρt → e−λδt

t
ρt

as δt→ 0, where λ is a rate s.t. (1− λδt) is the probability that event doesn’t occur
in a small time unit δt and (1 − λδt)t/δt is the probability that event doesn’t occur
during t. In the limit the events are exponentially distributed.

The continuous-time coalescent. Suppose that we measure time in N generations.
Then, for large N one generation can be seen as a continuous time approximation.
Setting t = τN , we get from Gi,i−1 that

(
i
2

)
is the rate at which coalescent events

occur (where the time unit is N generations). Then,

Pr{Ti > t} → e−(i2)t, as N →∞, (2.2.15)

is the probability that no coalescent event happens during t. We get that the proba-
bility density function of Ti is

fTi(t) =

(
i

2

)
e−(i2)t. (2.2.16)
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2.2.2 Moran model derivation

In Moran model, only two things can happen

• with probability 1/N the same individual is chosen to reproduce and to die.
As single offspring replaces its parent, a common ancestor event between two
lineages is impossible (both within the sample and the whole population)

• with probability 1 − 1/N different individuals reproduce and die, thus parent
and offspring coexist in the population in the next time-step. Backwards in time,
a common ancestor event occurs in the total (!) population.

Thus, for coalescent event to happen among the i lineages, the i lineages need to
contain the parent and the offspring (randomly sampled without replacement). Using
simple probabilistic rules, a straightforward calculation shows that

Gi,i−1 = (1− 1/N)
i(i− 1)

N(N − 1)
=

(
i

2

)
2

N2
(2.2.17)

is the probability that a coalescent event happens among the i lineages in one time-
step (exercise).

2.2.3 The n-coalescent

In this section we give a formal description of the n-coalescent (Kingmans coalescent)
and the convergence theorem for exchangeable-type populations (complete description
will appear soon, at this moment we just describe the consequences). It is adopted from
Kingman (1982) and Möhle (2000). The convergence theorem is found in Kingman
(1982, pg. 101, Theorem 1). The Theorem states that in the limit as population size N
goes to infinity, the coalescent times Ti are independent and exponentially distributed
as

fTi(t) =

(
i

2

)
e−(i2)t, i = 2, . . . , n (2.2.18)

when time is measured appropriately (i gives the number of lineages at time t). For
the Theorem to hold we need the variance σ2 = Var(v1) to converge to a non-zero
limit as N → ∞, where v1 is the number of offsprings of the 1st individual in the
parent generation (note that it doesn’t matter which parent we look at, they all have
the same variance).

The Theorem also gives the correct time-scale for the coalescent times Ti: the time
of the model at hand has to be scaled by factor Ne = N

σ2 to obtain the time-scale of
the ancestral process (see below for an example). Ne is called the coalescent effective
size.

Ne in Wright-Fisher and Moran models. Let us first calculate σ2 in the Wright-
Fisher model. The joint distribution of the numbers of offspring V1, V2, . . . , VN each
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generation of the N individuals is multinomial with parameters N and p1 = p2 =
· · · = pN = 1

N
. We get

E[Vi] = Npi = N
1

N
= 1 (2.2.19)

Var[Vi] = Npi(1− pi) = 1− 1

N
(2.2.20)

Cov[Vi, Vj] = −Npipj = − 1

N
. (2.2.21)

As N → ∞, σ2 = Var[Vi] → 1. We thus have Ne = N , that is, measuring time in N
generations the coalescent times are exponentially distributed with parameter

(
i
2

)
.

For the Moran model the joint distribution of V1, V2, . . . , VN is not a well known dis-
tribution. We will say that if an individual is not chosen for reproduction nor death it
leaves one offspring (i.e. instead of saying that the individual survives until the next
generation we say it is replaced by one offspring).

Exercise. Show that in the Moran model E[Vi] = 1 and Var[Vi] = 2
N

(1− 1
N

).

In the Moran model, as N → ∞, σ2 → 0, and hence Kingman’s convergence
theorem can’t be applied. In the previous section we however showed that Moran
model does converge to the coalescent. Möhle (2000) provides a more general Theorem
that also covers the Moran model.

2.2.4 Some properties of coalescent genealogies

Let us denote with

TMRCA =
n∑
i=2

Ti (2.2.22)

the time to the most recent common ancestor (MRCA) of the entire sample n and
with

Ttotal =
n∑
i=2

iTi (2.2.23)

the total length of all the branches in the genealogy. As TMRCA and Ttotal are inde-
pendent r.v., we have

E[Ttotal] =
n∑
i=2

iE[Ti] =
n∑
i=2

i
2

i(i− 1)
= 2

n−1∑
i=1

1

i
(2.2.24)
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and

E[TMRCA] =
n∑
i=2

2

i(i− 1)
= 2

n∑
i=2

(
1

(i− 1)
− 1

i
) = (2.2.25)

= 2(1− 1

2
+

1

2
− 1

3
+

1

2
− · · ·+ 1

n− 1
− 1

n
) = (2.2.26)

= 2(1− 1

n
) (2.2.27)

Let us now give the full probability distributions of TMRCA and Ttotal. The distribution
of TMRCA is the sum of n − 1 independent exponential r.v. Ti, with parameters λi =(
i
2

)
= i(i−1)

2
for 2 ≤ i ≤ n. Because the parameters λi take different values for different

i, we need to take a series of n− 1 convolutions of Ti, and we obtain

fPn
i=2 Ti

(t) =
n∑
i=2

λie
−λit

n∏
j=2,j 6=i

λj
λj − λi

. (2.2.28)

An exponential r.v. can be rescaled by any constant factor to yield a new exponential
r.v. with an appropriately rescaled parameter. E.g. If we wish to measure time in
units that are C times longer than the old units, we perform s = t/C, so that t = Cs
and dt = Cds. Then

fS(s)ds = λe−λtdt = λCe−λCsds (2.2.29)

Defining T ∗i = iTi, then T ∗ also follows an exponential distribution,

fT ∗i (t)dt =

(
i

2

)
e−(i2)t∗dt∗ =

i− 1

2
e−

i−1
2
tdt (2.2.30)

and

fTtotal(t)dt =
n∑
i=2

i− 1

2
e−

i−1
2
t

n∏
j=2,j 6=i

j − 1

j − i
. (2.2.31)

2.2.5 Human-Neanderthal couples?

In recent years there has been a considerable debate whether ancient humans and
neanderthals have interbred, and consequently whether there is Neanderthal DNA
left in humans, after the time of divergence of their ancestry about 500, 000 years ago
(TMRCA of humans and Neanderthals). It was suggested that this mixing of populations
would have happened when human subpopulation migrated out of Africa 100, 000 −
30, 000 years ago and encountered Neanderthals in Western Asia (Krings et al. 1997).
Krings et al. sampled mtDNA from a Neanderthal that lived 30, 000− 100, 000 years
ago, compared it to the mtDNA of 986 modern humans (and some chimpanzees), and
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concluded that Neanderthal sequence falls outside human mtDNA variation (thus
concluding that ancient humans and Neanderthals didn’t interbreed in this period).
Furthermore, they estimated that the time Te for the MRCA of the sample of 986 is
at least four times shorter that the MRCA event Tr of humans and Neanderthals, i.e.
Tr ≥ 4Te.

As the obtained genealogical tree seems unlikely under the assumption of hu-
mans and Neanderthal interbreeding 30, 000 − 100, 000 years ago, Nordborg (1998)
set out to calculate the actual probability of such a genealogical tree under a such
null-model (where humans and Neanderthal did interbreed randomly). He was after a
Pr{tree AND Tr ≥ 4Te} under the null-model. The key idea is to calculate the proba-
bility by conditioning on the number of human mtDNA lineages that existed at time
ts (the age of the Neanderthal) when the Neanderthal sequence joins the remaining
lineages.

Let An(t) denote the number of lineages at time t in the past of a present day
sample n. Note, that given An(t) the probability of the tree and the probability that
Tr ≥ 4Te are independent of one another. Thus,

Pr{tree AND Tr ≥ Te} =
n∑
k=1

Pr{Tr ≥ 4Te|k}Pr{tree|k}Pr{An(t) = k}. (2.2.32)

To calculate (2.2.32), Norborg assumed that the population size is constant s.t.
the coalescent effective size is Ne = 3400 (females, since mtDNA is inherited through
females only), the generation time is 20 years and that the Neanderthal sequence
is 30, 000 − 100, 000 years old. We thus have that in the coalescent time-scale, ts is
between 1500/Ne ≈ 0.44 and 5000/Ne ≈ 1.47.

Let us denote with Tn,i the time for a sample of n lineages to coalesce to i lineages
(this equals to the time of n− i coalescent events).

Let us first calculate Pr{Tr ≥ 4Te|k} (the other probabilities will be updated to the
lecture notes later). Note that Tr − ts = Tk+1,1, Te − ts = Tk+1,2, Tk+1,1 − Tk+1,2 = T2.
We have,

Pr{Tr ≥ 4Te|k} = Pr{Tr − 4Te ≥ 0|k} (2.2.33)
= Pr{(Tr − ts)− 4(Te − ts) ≥ 3ts|k} (2.2.34)
= Pr{(Tk+1,1 − 4Tk+1,2 ≥ 3ts} (2.2.35)
= Pr{(T2 − 3Tk+1,2 ≥ 3ts} (2.2.36)
= Pr{(T2/3− Tk+1,2 ≥ ts} (2.2.37)

Let T̃ = T2/3 − Tk+1,2. As T2/3 and Tk+1,2 are r.v. involved in non-overlapping
coalescence time-intervals, they are independent. Taking their convolution we have

fT̃ (t) =

∫ ∞
0

fTk+1,2
(x)fT2/3(y + x)dx (2.2.38)
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and hence

Pr{Tr ≥ 4Te|k} = Pr{T̃ ≥ ts} =

∫ ∞
ts

fT̃ (t)dy (2.2.39)

=

∫ ∞
ts

∫ ∞
0

fTk+1,2
(x)fT2/3(y + x)dxdy. (2.2.40)

Exercise. Show that the distribution of T2/3 is exponential with parameter λ = 3
(see 2.2.18).
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