
1 Introduction

The scope is to understand under which condition a sequence of ε-periodic functions u(ε)(x)

u : Ω 7→ R (1.1)

with Ω ⊂ Rd can be approximated in the form of a series

u(ε)(x) = u(0)

(
x,

x

ε

)
+ ε u(1)

(
x,

x

ε

)
+ ε2 u(2)

(
x,

x

ε

)
+ . . . (1.2)

in the limit of vanishing ε > 0. The main reference for the results presented in these notes is [1].

2 Convergence results for periodically oscillating functions in L1

Let Ω an open set in Rd and Y = [0, 1]d the unit cube in Rd.

Definition 2.1. A function ψ(x,y) ∈ L1(Ω×Y ), Y -periodic in y, is called an ”admissible” test function if and only
if

lim
ε↓0

∫
Ω
ddx

∣∣∣ψ (x, x
ε

)∣∣∣ =

∫
Ω
ddx

∫
Y
ddy |ψ (x,y)| (2.1)

LetCp(Y ) the space of Y -periodic continuous functions and let us denote by L1(Ω;Cp(Y )) the space of functions
of the form ψ(x,y), measurable and summable in x ∈ Ω, with values in the Banach space of continuous functions,
Y -periodic in y. To L1(Ω;Cp(Y )) we can associate the norm

‖ ψ(x,y) ‖L1(Ω;Cp(Y )):=

∫
Ω
ddx sup

y∈Y
|ψ(x,y)| (2.2)

The following proposition characterizes the elements of the L1(Ω;Cp(Y ))

Proposition 2.1. A function ψ(x,y) belongs to L1(Ω;Cp(Y )) if and only if there exists a subset E (independent of
y) of measure zero in Ω such that

1. For any x ∈ Ω/E the function y 7→ ψ (·,y) (i.e. ψ regarded as a function of y for x fixed) is continuous and
Y -periodic.

2. For any y ∈ Y the function x 7→ ψ(x, ·) is measurable on Ω.

3. The function x 7→ supy∈Y |ψ(x,y)| belongs to L1 (Ω):∫
Ω
ddx sup

y∈Y
|ψ(x,y)| < ∞ (2.3)

We omit the proof of the proposition 2.1 which is sketched in [1] but we use it to derive an explicit characterization
of admissible functions. Before doing that we observe that any function satisfying properties 1. and 2. is called a
Carathéodory-type function (see appendix A).

Proposition 2.2. Let ψ(x,y) ∈ L1(Ω;Cp(Y )). Then, for any positive value of ε > 0, ψ(x,x/ε) is a measurable
function on Ω such that

‖ ψ(x,x/ε) ‖L1(Ω)≤‖ ψ(x,y) ‖L1(Ω;Cp(Y )) (2.4)

and ψ(x,x/ε) is an ”admissible” test function, i.e., satisfies (2.1).

Proof. The proof consists of three steps
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Step 1.: proof of measurability

By proposition 2.1 since ψ(x,y) ∈ L1(Ω;Cp(Y )) it is also a Carathéodory-type function. This fact entails that
ψ(x,x/ε) is measurable.

Step 2.: norm upper bound

The bound (2.20) follows from the very definition of the norms.

‖ ψ(x,x/ε) ‖L1(Ω):=

∫
Ω
ddx

∣∣∣ψ (x, x
ε

)∣∣∣ ≤ ∫
Ω
ddx sup

y∈Y
|ψ (x,y)| ≡‖ ψ(x,y) ‖L1(Ω;Cp(Y )) (2.5)

Step 3.: admissibility

This is the most interesting for us part of the proof. For any integer n we pave the unit hypercube Y with nd smaller
hypercubes {Yi}n

d

i=1 each of linear size 1/n so that

Y =
nd⋃
i=1

Yi & Yi ∩ Yj = ∅ ∀ i 6= j &
nd∑
i=1

|Yi| = 1 (2.6)

having denoted |Yi| the volume of Yi. On each of the Yi we then sample a point yi ∈ Yi and define

ψn (x,y) =
nd∑
i=1

ψ (x, ȳi) χi

(y
ε

)
(2.7)

In (2.7) χ stands for the characteristic function of the set Yi extended by periodicity to the full Rd:

χi (y) :=

{
1 if y ∈ Yi modY

0 if y ∈/ Yi modY
(2.8)

For example if d = 1, Y = [0, 1] and Yi = [i/n, (i+ 1)/n), i = 0, . . . , n− 1 we have

χi (y) =

{
1 if y ∈

⋃
l∈Z
[
i
n + l, i+1

n + l
)

0 if y ∈/
⋃
l∈Z
[
i
n + l, i+1

n + l
) (2.9)

We will now show that the proposition holds true if we take the limit ε tending to zero for any finite n. Using this
result we will then show that as n tends to infinity the sequence of the ψn’s converges to ψ thus proving claim. Since
the χi’s are periodic they admit a Fourier series representation

χi(x) =
∑
k∈Zd

ci:k e
2π ık·x (2.10a)

ci:k :=

∫
Y
ddx e−2π ık·xχi(x) (2.10b)

Since ∣∣∣∣∫
Ω
ddxψ (x, ȳi)χi

(x
ε

)∣∣∣∣ ≤ ∫
Ω
ddx |ψ (x, ȳi)| < ∞ (2.11)
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we have then

lim
ε↓0

∫
Ω
ddxψ (x, ȳi)χi

(x
ε

)
=

lim
ε↓0

∑
k∈Zd

ck

∫
Ω
ddxψ (x, ȳi) e

2π ı k·x
ε =

∑
k∈Zd

ck lim
ε↓0

∫
Ω
ddxψ (x, ȳi) e

2π ı k·x
ε (2.12)

The rightmost term in (2.12) vanishes as a consequence of the Riemann-Lebesgue theorem for any

k 6= 0 (2.13)

so that

lim
ε↓0

∫
Ω
ddxψ (x, ȳi)χi

(x
ε

)
=

∫
Ω
ddxψ (x, ȳi)

∫
Y
ddy χi(y) (2.14)

We have therefore proved that

lim
ε↓0

∫
Ω
ddxψn

(
x,

x

ε

)
=

nd∑
i=1

∫
Ω
ddx

∫
Y
ddy ψ (x, ȳi)χi(y) =

∫
Ω
ddx

∫
Y
ddy ψn (x,y) (2.15)

It remains to pass to the limit n tending to infinity. Let us first prove that the strong topology of L1(Ω;Cp(Y )). Define

δn(x) = sup
y∈Y
|ψn (x,y)− ψ (x,y) | (2.16)

Since y 7→ [ψn (x,y)− ψ (x,y)] is almost everywhere in x picewise continuous in y, we have

δn(x) = δ̃n(x) = sup
y∈Y ∩Q

|ψn (x,y)− ψ (x,y) | (2.17)

The set Y ∩Q is countable and the supremum over a countable family of measurable function is also measurable (see
[1] and refs therein). The continuity of ψ in y also implies

lim
n↑∞

δn(x) = 0 (2.18)

Furthermore, the inequality

δn(x) ≤ 2 sup
y∈Y
|ψ (x,y) | (2.19)

guarantees that δn(x) ∈ L1(Ω). Thus we can invoke the dominated convergence theorem to write

lim
n↑∞

∫
Ω
ddx

∣∣∣ψn (x, x
ε

)
− ψ

(
x,

x

ε

)∣∣∣ ≤
lim
n↑∞

∫
Ω
ddx δn(x) = lim

n↑∞
‖ ψn(x,y)− ψ(x,y) ‖L1(Ω;Cp(Y ))

∫
Ω
ddx lim

n↑∞
δn(x) = 0 (2.20)

thus proving that the ψn strongly converge to ψ in L1(Ω;Cp(Y ))-convergence. Gleaning all the above information,
we are ready to estimate the difference∣∣∣∣∫

Ω
ddxψ

(
x,

x

ε

)
−
∫
x∈Ω

ddx

∫
Y
ddyψ (x,y)

∣∣∣∣ ≤ ∣∣∣∣∫
Ω
ddx

[
ψ
(
x,

x

ε

)
− ψn

(
x,

x

ε

)]∣∣∣∣
+

∣∣∣∣∫
Ω
ddxψn

(
x,

x

ε

)
−
∫
x∈Ω

ddx

∫
Y
ddy ψn (x,y)

∣∣∣∣+

∣∣∣∣∫
x∈Ω

ddx

∫
Y
ddy [ψn (x,y)− ψ (x,y)]

∣∣∣∣ (2.21)
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which by the first inequality in (2.20) becomes∣∣∣∣∫
Ω
ddxψ

(
x,

x

ε

)
−
∫
x∈Ω

ddx

∫
Y
ddyψ (x,y)

∣∣∣∣ ≤∣∣∣∣∫
Ω
ddxψn

(
x,

x

ε

)
−
∫
x∈Ω

ddx

∫
Y
ddy ψn (x,y)

∣∣∣∣+ 2 ‖ ψn(x,y)− ψ(x,y) ‖L1(Ω;Cp(Y )) (2.22)

The first term on the right hand side vanishes in the limit ε tending to zero, the second in the limit n ↑ ∞ thus showing
that ψ is admissible as claimed.

3 Convergence results for periodically oscillating functions, L2-case

Let as above Ω an open set in Rd and Y = [0, 1]d the unit cube in Rd.

Proposition 3.1. Let ψ ∈ L2(Ω;Cp(Y )) and define ψε(x) = ψ(x,x/ε). Then we have

1. ‖ ψε(x) ‖L2(Ω)≤‖ ψ(x,y) ‖L2(Ω;Cp(Y ))

2. ψε(x)
ε↓0
⇀
∫
Y d

dy ψ(x,y) := ψ̄(x) ∈ L2(Ω) i.e. weakly in L2(Ω)

3. limε↓0 ‖ ψε(x) ‖L2(Ω)≥‖ ψ(x,y) ‖L2(Ω×Y )≥‖ ψ̄(x) ‖L2(Ω)

Proof. 1. By definition we have

‖ ψε(x) ‖L2(Ω)=

∫
Ω
ddx |ψε|2

(
x,

x

ε

)
≤
∫

Ω
ddx sup

y∈Y
|ψ|2 (x,y) ≡‖ ψ(x,y) ‖L2(Ω;Cp(Y )) (3.1)

2. Let C0(Ω)⊗ Cp(Y ) the space of the continuous function with compact support of product form

ψ(x,y) =
∑
n∈Zd

un(x)vn(y) (3.2)

General results of functional analysis (see e.g. [2] ch. VII) guarantee that C0(Ω) ⊗ Cp(Y ) is dense over
C0(Ω;Cp(Y )) the space of continuous function with compact support. On its turn C0(Ω;Cp(Y )) is dense over
L2(Ω;Cp(Y )). This means that it is sufficient to prove the claim for

ψ
(
x,

x

ε

)
= u(x)v

(x
ε

)
(3.3)

As by hypothesis v is Y -periodic, it admits a Fourier series representation

ψ
(
x,

x

ε

)
=
∑
n∈Zd

u(x)vn e
2πın·x

ε (3.4a)

vn =

∫
Y
ddy e−2πın·y

ε v(y) (3.4b)

We can therefore write

ψ
(
x,

x

ε

)
=
∑
n∈Zd

u(x)vn e
2πın·x

ε (3.5)
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For any test function f ∈ L2(Ω) we have

lim
ε↓0

∫
Ω
ddx f (x)ψ

(
x,

x

ε

)
= lim

ε↓0

∑
n∈Zd

vn

∫
ddx f (x) u (x) e2πın·x

ε = v0

∫
ddx f (x) u (x) (3.6)

In other words we have proved that

u(x)v
(x
ε

)
ε↓0
⇀ u(x)

∫
Y
ddy v(y) (3.7)

The aforementioned argument density argument reduces then to the claim that any

ψ
(
x,

x

ε

)
∈ L2

(
Rd;Cp(Y )

)
(3.8)

is amenable to the form

ψ
(
x,

x

ε

)
=
∑
n∈Zd

un(x) e2πın·x
ε (3.9)

for some {un(x)}n∈Zd ∈ L2(Ω). We can prove the claim by applying the Riemann-Lebesgue theorem to each
term of the series.

3. For any f ∈ L2(Ω;Cp(Y )) we have

0 ≤
∫

Ω
ddx

[
ψ
(
x,

x

ε

)
− f

(
x,

x

ε

)]2
(3.10)

whence ∫
Ω
ddxψ2

(
x,

x

ε

)
≥
∫

Ω
ddx

[
2ψ
(
x,

x

ε

)
f
(
x,

x

ε

)
− |f |2

(
x,

x

ε

)]
ε↓0→
∫

Ω
ddx

∫
Y
ddy

[
2ψ (x,y) f (x,y)− f2 (x,y)

]
(3.11)

Owing to the arbitrainess of f we can replace it with a sequence {ψn}∞n=0 converging in L2 to ψ, we have∫
Ω
ddxψ2

(
x,

x

ε

)
≥
∫

Ω
ddx

∫
Y
ddy ψ2 (x,y) (3.12)

On the other hand using |Y | = 1 we can use the Cauchy-Schwartz inequality to write∫
Y
ddy ψ(x,y)

∫
Y
ddz ψ(x, z) ≤

[∫
Y
ddy ψ2(x,y)

]1/2
{∫

Y
ddy

[∫
Y
ddz ψ(x, z)

]2
}1/2

(3.13)

whence ∫
Y
ddy ψ2(x,y) ≥

[∫
Y
ddy ψ(x,y)

]2

:= ψ̄2(x) (3.14)

and therefore ∫
Ω
ddxψ2

(
x,

x

ε

)
≥
∫

Ω
ddx

∫
Y
ddy ψ2 (x,y) ≥

∫
Ω
ddx ψ̄2(x) (3.15)

as claimed.
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Appendices

A Reminder of measure theory

References for measure theory could by chapter 1 of [3] or chapter 5 of [2]. In oder to define a measurable function
we need the following concept

Definition A.1 (σ-algebra). A collection M of subsets of a set X is said to be a σ-algebra in X if M enjoys the
following properties

1. X ∈M

2. If A ∈M then Ac := X/A (the complement of A relative to X) also belongs to M .

3. If A = ∪∞n=1An and An ∈M for any n = 1, 2, . . . then A ∈M

From a σ-algebra we can define a measurable space

Definition A.2 (Measurable space). IfM is a σ-algebra in X then X is called a measurable space and the members
ofM are called the measurable sets of X .

A measurable function is then defined as a mapping between measurable spaces

Definition A.3 (Measurable function). LetX and Y be measurable spaces, respectively endowed with σ-algebrasM
and N . A function

f : X 7→ Y (A.1)

is measurable if the preimage of any B ∈ N is an element ofM:

∀B ∈ N ⇒ f−1(B) ∈ M (A.2)

The general definition of Carathéodory function requires the concept of topological space. To recall such concept
we observe that

Definition A.4 (Topology in X). A collection of subsets T of a set X is said to be a topology in X if it enjoys the
following three properties

1. The empty set ∅ belongs to T : ∅ ∈ T

2. If {Ai}ni=1 belong to T for all i (Ai ∈ T ∀ i) then

A1 ∩ A2 ∩ · · · ∩ An ∈ T (A.3)

3. If {Ai} is an arbitrary collection (finite, countable or uncountable) of elements of T then

∪iAi ∈ T (A.4)

We are thus ready to say that

Definition A.5 (Topological space). If T is a topology in X then X is a topological space and the elements of T are
the open sets in X .

and to give the general definition of Carathéodory function
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Definition A.6 (Carathéodory function). Let T1, T2 be be topological spaces and M be a measurable space. We say
that

f : T1 ×M 7→ T2 (A.5)

is a Carathéodory function if

1. x 7→ f (x, ·) is measurable for each x ∈ T1.

2. x 7→ f (·,x) is continuous for each x ∈ T2.

B Riemann-Lebesgue theorem

Theorem B.1. Let f an L1(I) function over an arbitrary interval I = [a, b] ⊂ R. Then for any real β we have

lim
α→∞

∫
I
dx f(x) cos(αx+ β) = 0 (B.1)

In particular we have

lim
α→∞

∫
I
dx f(x) cos(αx) = 0 (B.2a)

lim
α→∞

∫
I
dx f(x) sin(αx) = 0 (B.2b)

Proof. The proofs proceeds in steps.

Step 1.: constant function and |I| < ∞

If

f(x) = f ∀x ∈ I (B.3)

then ∫
I
dx f(x) cos(αx+ β) = f

sin(α b+ β)− sin(αa+ β)

α
(B.4)

and

lim
α→∞

∣∣∣∣∫
I
dx f(x) cos(αx+ β)

∣∣∣∣ ≤ lim
α→∞

|f | 2

|α|
= 0 (B.5)

Step 2.: stepwise function

If I =
⋃n
i=1 Ii with Ii = [ai, ai+1), b = an+1 Ii ∩ Ij = ∅ for any i 6= j and

f(x) =
n∑
i=1

fi χi(x) (B.6)
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for χi the characteristic function of Ii then∫
I
dx f(x) cos(αx+ β) =

n+1∑
i=1

fi
sin(αai+1 + β)− sin(αai + β)

α
(B.7)

so that

lim
α→∞

∣∣∣∣∫
I
dx f(x) cos(αx+ β)

∣∣∣∣ = lim
α→∞

n+1∑
i=1

2 |fi|
|α|

= 0 (B.8)

Note that the hypothesis f ∈ L1(I) extends immediately the result to the cases I = R or f having a countable number
of jumps (n =∞). In both cases absolute integrability implies∫

I
dx |f(x)| =

∑
i

|fi| = F < ∞ (B.9)

which on its turn entails

lim
α→∞

∣∣∣∣∫
I
dx f(x) cos(αx+ β)

∣∣∣∣ = lim
α→∞

2 |F |
|α|

= 0 (B.10)

Step 3.: integrable function over |I| < ∞

Riemann integrability means that for any arbitrary partition I =
⋃n
i=1 Ii with Ii = [ai, ai+1), b = an+1 Ii ∩ Ij = ∅

for all i 6= j we can find for any ε > 0 two stepwise functions

f (j)(x) =
n∑
i=1

f
(j)
i χi(x) j = 1, 2 (B.11)

such that

f (1)(x) ≤ f(x) ≤ f (2)(x) (B.12a)

∫
I
dx [f (2)(x)− f (1)(x)] ≤ ε

2
(B.12b)

By the this very definition it follows that∣∣∣∣∫
I
dxf(x) cos (αx+ β)

∣∣∣∣ ≤ ∣∣∣∣∫
I
dx[f(x)− f (1)] cos (αx+ β)

∣∣∣∣+

∣∣∣∣∫
I
dxf (1) cos (αx+ β)

∣∣∣∣
≤
∫
I
dx[f (2)(x)− f (1)(x)] +

∣∣∣∣∫
I
dxf (1)(x) cos (αx+ β)

∣∣∣∣ ≤ ε

2
+

∣∣∣∣∫
I
dxf (1)(x) cos (αx+ β)

∣∣∣∣(B.13)

Since Step 2. we can choos an α sufficiently large that∣∣∣∣∫
I
dxf (1)(x) cos (αx+ β)

∣∣∣∣ < ε

2
(B.14)

the arbitrariness of ε yields the proof.
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Step 4.: f ∈ L1 (R)

In such a case we can always choose an I with |I| < ∞ such that∣∣∣∣∫
R
dx f(x) cos (αx+ β)

∣∣∣∣ ≤ ∣∣∣∣∫
I
dx f(x) cos (αx+ β)

∣∣∣∣+
ε

2
(B.15)

for any ε > 0. Upon applying Step 3. to the integral on the right hand side we can prove the claim.

It is immediate to see that the claim of the Riemann-Lebesgue theorem holds true for differentiable functions.
Upon integration by parts∫

I
dx f(x) cos (αx+ β) = f(x)

sin (αx+ β)

α

∣∣∣∣b
a

−
∫
I
dx

df

dx
(x)

sin (αx+ β)

α
(B.16)

we obtain the upper bound∣∣∣∣∫
I
dx f(x) cos (αx+ β)

∣∣∣∣ ≤ 2 |f(a)| ∨ |f(b)|
|α|

+
1

|α|

∫
I
dx

∣∣∣∣ dfdx(x)

∣∣∣∣ (B.17)

readily vanihing for α tending to infinity.

B.1 Counter-example

The Riemann-Lebesgue holds because of the cancellations induced by the rapid oscillations of trigonmetric functions.
For this reason it may not apply to functions f the integral whereof converges over R also because of cancellations.
As an example consider∫

R
dx sinx2 cos (αx+ β) = =

∫
R
dx

eı(x
2+αx+β) + eı(x

2−αx−β)

2
(B.18)

a change of variables yields ∫
R
dx sinx2 cos (αx+ β) = =

∫
R
dx e

ı
(
x2−α

2

4

)
cosβ (B.19)

We can perform the integral over x by encompassing the integral in a contour over the complex plane including the
line

z = r eı
π
4 (B.20)

We have then∫
R
dx sinx2 cos (αx+ β) = 2 cosβ= eı

π−α2
4

∫
R+

dx e−x
2

=
√
π cosβ sin

(
π − α2

4

)
(B.21)
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