1 Introduction

The scope is to understand under which condition a sequence of e-periodic functions () (x)
u: Q=R (1.1)

with Q C R? can be approximated in the form of a series

u (x) = u(0) (x, %) +euq) (m, g) + 2 U(a) (w, g) +... (1.2)

in the limit of vanishing e > 0. The main reference for the results presented in these notes is [1].

2 Convergence results for periodically oscillating functions in I

Let © an open set in R? and Y = [0, 1]¢ the unit cube in RY.

Definition 2.1. A function (x,y) € L (Q xY), Y-periodic in y, is called an "admissible” test function if and only

if
hm/d:c‘wm /dd/dd 0 (2, )| 2.1)

Let Cp(Y') the space of Y -periodic continuous functions and let us denote by L (€2; C,,(Y")) the space of functions
of the form v (x, y), measurable and summable in « € €, with values in the Banach space of continuous functions,
Y -periodic in y. To L}(Q; C,(Y')) we can associate the norm

(@, ) e, / d'z sup [ (z, )| 2.2)

yey
The following proposition characterizes the elements of the L!(2; C,,(Y))

Proposition 2.1. A function 1(zx,y) belongs to L*(Q; C,(Y)) if and only if there exists a subset E (independent of
y) of measure zero in ) such that

1. Forany x € Q/E the function y — 1 (-, y) (i.e. ¢ regarded as a function of y for x fixed) is continuous and
Y -periodic.

2. Foranyy € Y the function x — (x, -) is measurable on .

3. The function @ — sup,cy |¢)(x,y)| belongs to L' ():

/dda: sup |¢(z,y)| < oo 2.3)
Q yey

We omit the proof of the proposition 2.1 which is sketched in [1] but we use it to derive an explicit characterization
of admissible functions. Before doing that we observe that any function satisfying properties 1. and 2. is called a
Carathéodory-type function (see appendix A).

Proposition 2.2. Let )(x,y) € LY(Q;C,(Y)). Then, for any positive value of ¢ > 0, 1(x, z/€) is a measurable
function on ) such that

| ¥z, z/e) (L) <l (@ y) Lo, () (2.4)
and Y(x, /<) is an "admissible” test function, i.e., satisfies (2.1).

Proof. The proof consists of three steps



Step 1.: proof of measurability

By proposition 2.1 since ¢(z,y) € L (Q;Cy(Y)) it is also a Carathéodory-type function. This fact entails that
Y (x, x/e) is measurable.

Step 2.: norm upper bound

The bound (2.20) follows from the very definition of the norms.
x
loe,2/e) o= [ oo (2.2)| < [ @t sup o @yl =l ve.v) lwe,m 2.5)
Q € Q yey

Step 3.: admissibility

This is the most interesting for us part of the proof. For any integer n we pave the unit hypercube Y with n? smaller
d
hypercubes {Y;}"_; each of linear size 1/n so that

nd nd
y=J7 & VinY; =0 Vi#j & d =1 (2.6)
i=1 1=1

having denoted |Y;| the volume of Y;. On each of the Y; we then sample a point y; € Y; and define
nd
_ Y
bo(@,y) = v (2,8 xi (2) @7
i=1
In (2.7) x stands for the characteristic function of the set Y; extended by periodicity to the full R%:

(2.8)

1 ify € YymodY
Xi (y) =

0 ify € YimodY
For example ifd = 1,Y = [0,1] and Y; = [i/n, (i + 1)/n),i =0,...,n — 1 we have

Xi (y) = . . i1 (2.9)
0 ify ¢ Uz [2+12+1)

We will now show that the proposition holds true if we take the limit € tending to zero for any finite n. Using this
result we will then show that as n tends to infinity the sequence of the 1,,’s converges to 1 thus proving claim. Since
the x;’s are periodic they admit a Fourier series representation

Xi(x) = > cige® kT (2.10a)
kezd
Cite 1= / dlze 2™ Ry, (x) (2.10b)
Y
Since
_ r _
/ddxq/;(:c,yl-)xi ()‘ < / d%x | (2, 9;)] < oo (2.11)
Q € Q




we have then

leifg dz i (x,9;) Xi <£> =

hm ck/ddwzp x,Y;) 2 EE Z ckhm/ dd:m/J (z,9,;) Q2 EE (2.12)

0 pez kezd
The rightmost term in (2.12) vanishes as a consequence of the Riemann-Lebesgue theorem for any
k#£0 (2.13)

so that

i [ dov @ (2) = [ deves) [ daw @14

el0 )

We have therefore proved that

i [ e, (2.7) Z/dd i@ = [ e [ dyi @y @.15)
el0
It remains to pass to the limit n tending to infinity. Let us first prove that the strong topology of L' (€2; C,,(Y")). Define

on(x) = sgpwn (x,y) = (z,y) | (2.16)
Y

Since y — [V, (x,y) — ¥ (x,y)] is almost everywhere in & picewise continuous in y, we have

Sn(x) =0n(x) = sup [Uy (z,y) — ¢ (z,y)] (2.17)
yeYNQ

The set Y N Q is countable and the supremum over a countable family of measurable function is also measurable (see
[1] and refs therein). The continuity of v in y also implies

lim 6, (x) =0 (2.18)
nToo
Furthermore, the inequality
() <2 sup [y (z,y)| (2.19)
yey

guarantees that d, (z) € L!(2). Thus we can invoke the dominated convergence theorem to write

. d xr xr
Z) - <
711%10 Q v wn(w’s) ¢<$75>’_
1iTII1 'z 6, (z) = liTm | Yn(x,y) — ¥(@,9) L0, o) / d'x liTHl on(x) =0 (2.20)

thus proving that the 1, strongly converge to v in L' (€; Cp(Y'))-convergence. Gleaning all the above information,
we are ready to estimate the difference

Qdd1‘1/} (:n,%) —/megddaz/yddylﬁ (337’9)’ < '/Qddx [1/1 (CB’%) ~Yn (m’ jﬂ’

Qddan (:c,%) — /weﬂ ddx/yddywn (a:,y)’ + /weﬂ dd:c/yddy [ty (z,Y) —w(w,y)]’ (2.21)
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which

by the first inequality in (2.20) becomes

/Qddw(m,j) —/megdd:z/yddylb(:c,y)' <

[dtavn(22) = [ dta [ atyo, (x,y>’+2 | ) — 0(2,0) l@oyoy  222)
Q € xeQ Y

The first term on the right hand side vanishes in the limit € tending to zero, the second in the limit n 1 oo thus showing

that

is admissible as claimed. O

3 Convergence results for periodically oscillating functions, L?-case

Let as

above © an open set in R% and Y = [0, 1]¢ the unit cube in R?.

Proposition 3.1. Let ) € L2(Q; C,(Y)) and define ¢ (x) = ¢(x, x /c). Then we have

1.

2.
3.

Proof.

2.

| 4% (@) llLe @ <Il ¥ (=, ¥) llL2(0ic,(v))
e () 40 [y Ay p(z,y) == Y(x) € L2(Q) i.e. weakly in L?(Q2)
limejo || () L2 >l ¥(@,Y) lL2@xy) 2l 9(@) (L2

1. By definition we have

| ¥°(2) 2= /Qddﬁf |y |? <$7§> < /Qddl’ SUQWJ’Q (z,y) =l (=, Y) L2, 0v)) (3.1

ye

Let Cy(Q2) ® Cp(Y') the space of the continuous function with compact support of product form
V(x,y) = ) un(x)vn(y) (32)
nezd

General results of functional analysis (see e.g. [2] ch. VII) guarantee that Cy(Q2) ® Cp(Y") is dense over
Co(§2; Cp(Y)) the space of continuous function with compact support. On its turn C(€2; Cp,(Y')) is dense over
L2(Q; Cp(Y)). This means that it is sufficient to prove the claim for

b (a: f) = u(a)v (9) (3.3)
€ €
As by hypothesis v is Y -periodic, it admits a Fourier series representation
P (a:, g) = Z u(x)vn, e2m B (3.4a)
nezd
Up = / dly e 2" v (y) (3.4b)
Y
We can therefore write
T na
) (a:,g) = Z u(x)vn, e?m e (3.5)
nezd



For any test function f € IL?(Q) we have

lim [ d% f (x)v (a:, E) = lim vn/ddacf () u(z) ™ = vo/dd:rf (x) u(x) (3.6)
7.4

0 Jq ) el0
ne

In other words we have proved that

u(e)o (%) Luta) [ alyoiw) (67)
€ Y
The aforementioned argument density argument reduces then to the claim that any
" (ac f) e L2 (Rd; Cp(Y)> (3.8)
€
is amenable to the form
:B n-x
) (cc,g> = Z Un(x) 2™ < (3.9)
nezd

for some {ur ()},,c74 € L*(€2). We can prove the claim by applying the Riemann-Lebesgue theorem to each
term of the series.

. Forany f € L%(Q; C,(Y)) we have

0< /Qddzn [w (a: g) _f <:c %)]2 (3.10)
Jteet (2 2) 2 [Late 20 (2. 2) 1 (2. 2) -1 (7))

@/d%/ d%y [2¢ (z,y) f (z,y) — > (z,y)] (3.11)
Q Y

whence

Owing to the arbitrainess of f we can replace it with a sequence {1, },~, converging in L2 to 1), we have

/dd:m/)Z (w, E) z/dd:r/ dy? (x,y) (3.12)
Q € Q Y

On the other hand using |Y'| = 1 we can use the Cauchy-Schwartz inequality to write

/Y dly (., ) /Y alz (. 2) < [ /Y ddw?(a:,w] 1/2{ /Y dy [ /Y ddzw(w,z>r}l/2 (3.13)

whence
2
/Y Ay y?(z,y) > [ /Y ddw(cc,y)} = ¢ () (3.14)
and therefore
/de:wQ <m,£> Z/dda:/ dy? (z,y) Z/dd:cz/JQ(cc) (3.15)
Q € Q Y Q
as claimed.
]



Appendices

A Reminder of measure theory

References for measure theory could by chapter 1 of [3] or chapter 5 of [2]. In oder to define a measurable function
we need the following concept

Definition A.1 (o-algebra). A collection M of subsets of a set X is said to be a o-algebra in X if M enjoys the
following properties

1. XeM

2. If A € M then A° := X /A (the complement of A relative to X ) also belongs to M.
3 IfA=U2 A, and A, € M foranyn =1,2,... then A € M

From a o-algebra we can define a measurable space

Definition A.2 (Measurable space). If M is a o-algebra in X then X is called a measurable space and the members
of M are called the measurable sets of X.

A measurable function is then defined as a mapping between measurable spaces

Definition A.3 (Measurable function). Let X and Y be measurable spaces, respectively endowed with o-algebras M
and N. A function

f: X =Y (A.1)
is measurable if the preimage of any B € N is an element of M.:
VB e N=f1B) eM (A2)

The general definition of Carathéodory function requires the concept of topological space. To recall such concept
we observe that

Definition A.4 (Topology in X). A collection of subsets T of a set X is said to be a topology in X if it enjoys the
following three properties

1. The empty set () belongsto T: 0 € T
2. If {Ai}] belong to T foralli(A; € T Vi) then

AN Aan---NA, €T (A.3)

3. If {A;} is an arbitrary collection (finite, countable or uncountable) of elements of T then

U;A; €T (A4)

We are thus ready to say that

Definition A.5 (Topological space). If T is a topology in X then X is a topological space and the elements of T are
the open sets in X.

and to give the general definition of Carathéodory function



Definition A.6 (Carathéodory function). Let T, T5 be be topological spaces and M be a measurable space. We say

that
f: T1 X M — T2
is a Carathéodory function if

1. x — f(x,-) is measurable for each x € T.

2. & f(-,x) is continuous for each x € T.

B Riemann-Lebesgue theorem

(A.5)

Theorem B.1. Let f an 1L.*(I) function over an arbitrary interval I = [a,b] C R. Then for any real 3 we have

lim [ dz f(z) cos(ax+3)=0

a—0o0 I

In particular we have

lim [ dx f(z) cos(ax) =0

a— 00 I

lim [ dz f(z) sin(az) =0

a—0o0 I

Proof. The proofs proceeds in steps.

Step 1.: constant function and |/| < oo

If
flx)=f Veel
then
/Idl‘ f(z) cos(ax + B) = fSin(ab + ) ;Sin(aa + B)
and
tin | [ 160y ostar + 9] < g 1112 =0

Step 2.: stepwise function

If I = ., Ii with [; = [a;, ait1), b = any1 I; N I; = () for any i # j and

f@)=>" fixi(x)
=1

B.1)

(B.2a)

(B.2b)

B.3)

(B.4)

(B.5)

(B.6)



for y; the characteristic function of I; then

n+1 . .
/daj f(z) cos(az + §) = Z , sin(aait1 + B)a— sin(aa; + B) B.7)
4 i=1
so that
lim /dmf(a;) cos(aaz—i—ﬁ)’— lim %2%’ =0 (B.8)
a—oo | [1 T a0 P |a| B ’

Note that the hypothesis f € IL'(I) extends immediately the result to the cases I = R or f having a countable number
of jumps (n = co). In both cases absolute integrability implies

[zl i@ =Y Il = F < o ®9)
I i
which on its turn entails
. —a
lim dx f(z) cos(ax + )| = lim —— =0 (B.10)
a—oo | J1 a—00 |a|

Step 3.: integrable function over |I| < oo

Riemann integrability means that for any arbitrary partition I = J;_; I; with I; = [a;,ai+1),b = ans1 NI =0
for all ¢ # j we can find for any € > 0 two stepwise functions

9@ =3P xilx)  j=12 (B.11)
=1
such that
fD@) < f(z) < fA(x) (B.12a)

[asl®e) - 10 @) < (B.12b)
I

<
2

By the this very definition it follows that

)/Idxf(x) cos (oza:—Fﬁ)’ < '/Idx[f(;c) — COS(MJrﬂ)‘ N

/da:f(l) cos (aw —i—,@’)‘
I

- /dx[f@)(x)_f(l)(x)]+‘/Idxf(l)(x) cos(ozx-i-ﬁ)‘ < S+

1

/dxf(l)(ac) cos (ax +5)‘(B.13)
I

Since Step 2. we can choos an « sufficiently large that

/dmf(l)(:v) cos (ax —i—ﬁ)‘ < (B.14)
I

Do ™

the arbitrariness of ¢ yields the proof.



Step 4.: f € L' (R)

In such a case we can always choose an I with |I| < oo such that

(B.15)

DN ™

/Rdacf(x)cos (aw—&-ﬁ)‘ <

/Idxf(a:) cos(ax—i—ﬁ)‘ +

for any ¢ > 0. Upon applying Step 3. to the integral on the right hand side we can prove the claim. O

It is immediate to see that the claim of the Riemann-Lebesgue theorem holds true for differentiable functions.
Upon integration by parts

. b d .
/Idxf(ac) cos(ax+ ) = f(x)w o /Idx dj;(a:)w (B.16)
we obtain the upper bound
2[f(a)[ VIf®) 1 df
/]dxf(:z) cos (aaz+ﬁ)’ < o] + M/Idx @(x) (B.17)

readily vanihing for « tending to infinity.

B.1 Counter-example

The Riemann-Lebesgue holds because of the cancellations induced by the rapid oscillations of trigonmetric functions.
For this reason it may not apply to functions f the integral whereof converges over R also because of cancellations.
As an example consider

Wz +az+B) + ez(mea z—p)

/d:v sinz? cos (avz + ) :S/dl‘e (B.13)
R R 2
a change of variables yields
2 z<x2fﬁ>
/dfc sin z cos(ax—i—ﬁ):%/dxe 1) cos 3 (B.19)
R R

We can perform the integral over x by encompassing the integral in a contour over the complex plane including the
line

P (B.20)
We have then
2 7'r70¢2 2 ™ — a2
/ dx sinz“cos (ax + ) = 2 cos S e’ 3 / dre ™ = \/mcos Bsin < 1 ) (B.21)
R Ry
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