Matematiikan ja tilastotieteen laitos
Introduction to Algebraic Topology
Fall 2011

Exercise 8

Solutions

1. Let X be a non-empty set. Define C,(X) to be the free abelian group gene-
rated on the set X" for n > 0 and C,(X) = 0 for n < 0. Prove that the

definition
n

0o, .- ) = Y _(=1) (w0, ., &1, .., 2)
i=0
defines a boundary operator that makes the collection C(X) = {C,(X),0} a
chain complex. Prove that C'(X) has an augmentation ¢: Cy(X) — Z defined
by e(x) = 1 on generators.

For a fixed x € X and every n > 0 define homomorphism z: C,(X) —
Cn-i-l(X) by
x(zo, ..., xn) = (T, 20, ..., Tp).
Prove that
y, ifn #0,

(8n+1x + x@n)(?/) = {y — g(y):[j’ ifn=0.

for all y € C(X). Deduce that the complex C'(X) is acyclic.

Solution: The fact that C(X) is a chain complex, i.e. 9o d = 0 is proved
completely analogically to the proof singular chain complex of a topological
space is a complex, so we skip the details.

The fact that is augmentation is also easy - it is clearly surjective (since
X is non-empty) and

(xt1 —29)=1—-1=0.

€01 (zo, 1) =€
Let n > 0 and y = (x, ..., 2,) is a free generator. Then

(0x +20)(y) = 0w, x0, ..., ) + D (1) (2,20, ., Fiy ., 20) =
=0

n+1

= (@0, ) + > (D) (@0, @i, w) Y (D) (@m0, Ey ).
=1 =0

Change of variables in the last sum shows that all terms cancel out, except
for the first one, so

(0x + 20)(y) = y.

Since this is true for all the generators, it is true for all elements.
We are left with the case n = 0. In that case

(Ox + x20)(x0) = O(x,20) + 0 = 29 — & = T9 — £(T0).



Since this is true for all generators, this must be true for all points.

In particular if we restrict = to C, then 2C — C'is a chain homotopy from
identity mapping of C to zero mapping. Since chain homotopic mappings in-
duce same mappings in homology, it follows that id: H,(C) — H,(C) is a
zero mapping for all n € N, which can only be possible if H,(C) is a trivial

group for all n € N, so C' is acyclic.

. Suppose C, D are chain complexes and f,, g,: C,, = D,, homomorphisms de-
fined for every n € Z. Suppose for every n € N there exists a homomorphism
H,: C, — D, with the property

Op1H, + Hy, 10, = [, — g, for all n € Z.

Prove that f — g = {f, — gu|n € Z} is a chain mapping.

Deduce that if ¢ is a chain mapping, also f is. In other words mapping that
is homotopic to a chain mapping is a chain mapping itself.
Solution: Denote h = f — g. Then

OH + HO = h.
Straight calculation shows that

Oh = 00H + 0HO = 0HO,

hO =0HO+ HO0 = 0HO,
so Oh = h0, i.e. h is a chain mapping.

Suppose g is a chain mapping. Then f = (f — ¢g) + g = h + ¢ is a chain
mapping, as a sum of two chain mappings.

. Define a homotopy H,,: C,(X) — C,.1 X by
H, (o) = Uti(Hn(An))a

where H,(A,) is the image of id: A,, - A, under H,,: LC,(A,) — LC,11(A,) C
Cy(A,). Prove (using the corresponding property of H,,: LC,(A,) — LC,11(A,))
that H is a chain homotopy between id and barycentric subdivision operator

S: O(X) = O(X).

Solution: Let us first show that H: LC(D) — LC(D) is natural with
respect to affine mappings. Put precisely that D and D’ be two convex subsets
of some finite-dimensional vector spaces a: D — D’ is an affine mapping.
Then alpha induces homomorphism oy : LC(D) — LC(D'), by restriction of
ay: C(D) — C(D'). This is well defined, since if §: A, — D is affine, then
ay(f) =aof: A, — D' is affine.

We claim that H o ay = oy H. This is shown by induction on n:

Hy = 0, so the claim is trivially true for n = 0. Suppose claim is proved for
n— 12> 0. Then

gy (f) = cg(by(f — Hao1(0f))) = baoyou(f — Hu1(9f))) =
= baof((f) = Ho-1(40f)) = baoy(ay(f) — Hp-1(00y(f))) = Hu(ay(f))



3

Here we used the facts that o4 is a chain mapping i.e. commutes with boun-
dary, the inductive assumption on H,_; and easy observation that
by = bay(f) -

This concludes the proof of commutative relation H o ay = ayH.

Now let o: A, — X be a singular n-simplex in X. We need to show that
(OH, + H,—10)(0) = 0 — S(0).
By definition we have
H,(0) = oy(H,(id: A, = A,)),

hence also
n

H,10(0) =Y (=1)"(0'0)s(Hyr((id: Ay — A1),
=0
Now 0'c = o: €', where £': A"~! — A" is an affine mapping. Also
(0'c)y = (0: ")y = oy 0 ().
By naturality of H,_; with respect to affine mappings we have that
() Hn-1(idn-1) = Ha-1((");) (i) = Hpa(€).

Hence
n

(0H,+H,_10)(c) = aﬁ(aHn(idn))Jan_l(Z(—l)’éi) = 04(0H,(id,))+H,_1(9(id,)).
=0
We know from lecture notes that
0H,(id,)) + H,—1(9(id,,) = id,, —S(id,,).
Plugging it into equation above gives
(0H,, + H,,—10)(0) = oy(id,, —S(id,,)) = 0 — S(0o)
by the definition of S.

4. Let
B, ={xeS" | x,41 >0} and
B_.={xeS" |z, <0}
Use homology and excision axioms to show that the inclusions i: (B, S"™!) —
(S",B_) and j: (B_,S™') — (S™, By) induce isomorphism in relative ho-
mology (for all dimensions).

Solution: Let U = S" \ {—€,+1}. Then U is open subset of S™ and the
inclusion of pairs (By,S" ' — (U,B_/ \ {—e€ns1}) is a homotopy equi-
valence. Hence it induces isomorphisms in relative homology for all n &
N. Since A = {—e,11} is a closed set which is contained in the interior
{r € S" | x,41 < 0} of B_, excision property implies that the inclusion
(U,B-/ \ {—€ns1}) — (5", B_) induces isomorphisms in homology. Hence
the composite i: (By,S"!) — (S", B_) also induces isomorphisms in relati-
ve homology (for all dimensions). The claim for j is proved similarly.
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5.

a) Suppose U C R™ is open and x € U. Prove that
Jot Ho(U,U\A{z}) = Hp(R",R" \ {z})

for all m € N. Here j is an obvious inclusion of pairs.

b) Suppose U C R™ and V' C R™ are both open and non-empty and there is
a homeomorphism f: U — V. Prove that n = m.(Hint: remove a point)
Solution: a) Let A=R"\ U,V =R"\ {z}. Then A=A CintV =V, so
excision property implies that inclusion induces isomorphism H,,(R™\ A,V '\
A) = H,,(R", V) for all m € N. But this is precisely the claim.

b) Let x € U. Homeomorphism f defines homeomorphism of pairs (U, U \
{z} = (V,V\{f(2)}, hence H,,(U,U \{z}) = Hy(V,V \{f(2)}).
By a) we obtain that Z = H,(R",R" \ {z}) = H,(R™,R™\ {z}). If m # n,
then H,(R™ R™\ {z}) = 0. Hence we must have m = n.

Suppose f: B' — B’ is a homeomorphism. Show that f maps interior B"
onto itself and the boundary S"~! also onto itself.

Solution: It is enough to show that if z € B" then also f(z) € B". Assume
contrary - f(z) € S*~'. Then f induces homeomorhism between X = B\ {z}
and Y = B"\ {f(z)}. But X has the same homotopy type as S"", in par-
ticular n — 1-dimensional reduced homology group of X is non-trivial. Y, on
the other hand, is convex (linear homotopy to origin suffice), in particular its
reduced homology groups are all trivial. Contradictions follows.

Show that U = S\{e, 41} is homeomorphic to R™ via stereographic projection
through the north pole e, ;.

Stereographic projection of the point y € U is defined to be the unique point
in R® C R™"! which lies on the line spanned by y and e,,;. Construct the
explicit formula for the stereographic projection and its inverse.

Solution: The line L, that goes through y and e, has parametric repre-
sentation

ty + (1 —t)ensr,t € R,

It follows that a point z(¢) = ty + (1 — t)epy1 = (ty1, -, tyn, tyns1 + 1 — 1)
lies on this line and belongs to R" = {z € R"*! | z;,.; = 0} if and only if

tWn1 — )+ 1=ty,p1 +1—-t=0

i.e. if and only if

1
f=——
1- Yn+1
Hence for the stereographic projection f: U — R"™ we obtain formula
1
Pt s nst) = T (1)
— Yn+1

This is well-defined, since y,.11 # 1 for y € U and is clearly continuous.

To construct formula for the inverse we take a point x € R® C R, the
line L, spanned by z and e, ; and try to find a unique point in U that lies



on L,. Now the representation for L, is
te+ (1 —t)epsr,t € R

It follows that a point z(t) = tx + (1 — t)e,41 = (txy, ..., tx,, 1 —1t) € L, is
in the set U if and only if ¢ # 0 and

e+ =2t +1 =22+ ... +t2) + (1 -t = 2(t)* =1 ie.
t(|z?+1) = 2.
Hence for the inverse g of f we obtain formula
_ 2> — 1
PR S A TS
Clearly g defined by this formula is continuous. From construction it follows

that g and f are inverses of each others. If one wants, one can also check
formally from the formulas that ¢ = f~L.

Cn+1-



