
Chapter 3

Singular homology

3.1 Zeroth homology group, path components

and reduced homology

Suppose X is a topological space. Let f : ∆n → X be a singular simplex in
X . Since ∆n is path-connected, the image of f is also path-connected, hence
contains in some path-component Xa of X . In particular as an element of
Cn(X) the chain f belongs to a subgroup Cn(Xa).
It follows that the singular chain complex of X is completely determined by
the singular chain complexes of its components. To formalize this in precise
mathematical terms we need to make the following definition.

Suppose (Ca, ∂a)a∈A is a collection of chain complexes. We define their
direct sum to be the chain complex (C, ∂) = ⊕Ca defined by

Cn = ⊕(Ca)n,

∂(ca)a∈A = (∂a(ca))a∈A.

For every b ∈ A there are chain mappings ib : Cb → C (inclusion) and
pb : C → Cb (projection).

Proposition 3.1.1. Suppose X is a topological space and let (Xa)a∈A be the
set of all path-components of X. Then the chain inclusions (iα)♯ : C(Xα) →
C(X) induce a chain isomorphism

(ia)a∈A : ⊕a∈A C(Xa) → C(X)

of chain complexes.

Proof. Exercise 3.1.
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This result translates to homology groups with the aid of the following
general result.

Lemma 3.1.2. Homology operation preserves direct sums of chain com-
plexes. More precisely suppose the chain complex C is a direct sum of its
subcomplexes (Ca)a∈A. Then inclusion mappings ia : Ca → C induce a chain
isomorphism

((ia)∗)a∈A : ⊕a∈A Hn(Ca) → Hn(C)

for every n ∈ Z.

Proof. Exercise 3.2a).

Corollary 3.1.3. Suppose X is a topological space let (Xa)a∈A be the set
of all path-components of X. Then the inclusions ia : Xa → X induce an
isomorphism

((ia)∗)a∈A : ⊕a∈A Hn(Xa) → Hn(X)

for every n ∈ N.

Proof. Exercise 3.2b).

It follows that it is enough to study homology groups of the path-connected
spaces.

Next we compute the 0-th homology of every space. For a topological
space X define homomorphism of groups ε : C0(X) → Z by asserting

ε(σ) = 1

for every free generator σ ∈ Sing0(X). Notice that the set Sing0(X) can be
identified with the set of points of X . Now ∂0 = 0, since C−1(X) = 0, so
Ker ∂0 = C0(X) and hence

H0(X) = C0(X)/ Im ∂1.

Suppose f ∈ C1(X). Then

ε(∂1(f)) = ε(f(1)− f(0)) = 1− 1 = 0.

Since this is true for every free generator of C1(X), we have that

ε ◦ ∂1 = 0,

thusa ε induces the homomorphism

ε∗ : H0(X) → Z.

Moreover, if X is not an empty space, ε is a surjection, so also ε∗ is a sur-
jective mapping.
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Proposition 3.1.4. Suppose X is path-connected and non-empty. Then
ε∗ : H0(X) → Z is an isomorphism.

Proof. Since we already observed that ε is surjective, it is enough to prove
that Ker ε = Im ∂1. The result then follows from the isomorphism theorem
of the group theory.
The inlusion Im ∂1 ⊂ Ker ε is already proved above for all spaces. Conversly
suppose that

c =

k∑

i=1

nixi ∈ Ker ε,

for some k ∈ N, ni ∈ Z, xi ∈ X . Then

k∑

i=1

ni = ε(c) = 0.

Fix a point x ∈ X (for example x0). Since X is path-connected, for every
i = 1, . . . , k there is a path fi : I → X from x to xi, i.e. f(0) = x, f(1) = xi.
Now

d =
k∑

i=1

nifi ∈ C1(X) and

∂1(d) =
k∑

i=1

ni(xi − x) =
k∑

i=1

nixi −
( k∑

i=1

ni

)
x =

k∑

i=1

nixi = c.

Hence c ∈ Im ∂1 and we are done.

Since 1 ∈ Z is a generator of the free group Z and ε∗[x] = 1 for every
x ∈ X , it follows that as a generator of H0(X) for the path-connected space
X we can take a homology class [x] of any fixed point x ∈ X (which is a
0-simplex in X).

Corollary 3.1.5. Suppose X is a topological space. Then H0(X) is a free
abelian group on the set of path components of X.
If H0(X) = Zn for n ∈ N, then X has exactly n components. In particular
X is path-connected if and only H0(X) ∼= Z.

Proof. The first assertion follows from the previous proposition and Corollary
3.1.3. The second follows from the the fact that Z(A) = Zn if and only if A
has n elements (exercise (2.9).
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Notice that in general as free generators of H0(X) ∼= Z(A) we can take a
collection of points (xa)a∈A (or their homology classes to be precise), where
exactly one point is chosen from every path-component of X .

Consider a chain complex C ′ with C ′
n = 0 for n 6= 0, C0 = Z and all

boundary operators zero. We will denote this complex simply by Z, slightly
abusing the notation. Obviously Hn(Z) = 0 for n 6= 0 and H0(Z) = Z.
Let C be an arbitrary chain complex. A chain mapping ε : C → Z reduces
to a single homomorphism ε : C0 → Z subject to a single condition

ε ◦ ∂1 = 0

since the diagram
C1

//

∂1
��

0

��
C0

ε // Z

must be commutative.
Such a homomorphism ε : C0 → Z is called an augmentation of the complex
C if C is non-negative and ε is also surjective. The pair (C, ε) is then called
an augmented chain complex. Above we have constructed a canonical
natural augmentation of the complex C(X) for every non-empty topological
space X (notice that for empty space the constructed mapping is not surjec-
tive, hence not an augmentation).

Since ε : C → Z is a chain mapping, its kernel C̃ = Ker ε is a chain
complex, a subcomplex of C (exercise). Clearly C̃n = Cn for n 6= 0 and since
ε is surjective in all dimensions, we have an exact short sequence

0 // C̃
i // C

ε // Z // 0

of chain complex and chain mappings. From the corresponding long exact
homology sequence we obtain for n > 0 the exact sequence

Hn+1(Z) = 0 // Hn(C̃) i // Hn(C) // Hn(Z) = 0

and for n = 0 the exact sequence

H1(Z) = 0 // H0(C̃) i // H0(C)
ε∗ // Z = H0(Z) // 0

Since Z is free, it follows from the lemma 2.2.12 that last sequence splits.
Hence it follows that

Hn(C̃) = Hn(C) for n > 0
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H0(C) = H0(C̃)⊕ Z and

H0(C̃) = Ker ε∗.

In particular these considerations apply to the non-negative chain com-
plex C(X) for non-empty topological space X , with augmentation ε defined

above. The homology groups Hn(C̃(X)) of the chain complex C̃(X) are
called reduced singular homology groups of the space X and are de-
noted H̃n(X). It follows that

H̃n(X) = Hn(X) if n > 0,

H0(X) = H̃0(X)⊕ Z and

H̃0(X) = Ker ε∗.

It can be proved that H̃0(X) is also free abelian (it is trivial, if you know
that any subgroup of a free group is free). For our purposes the following
result will suffice.

Proposition 3.1.6. Suppose X is a non-empty topological space. Then
H̃0(X) = 0 if and only X is path-connected.

Proof. If X is path-connected, ε∗ is an isomorphism, in particular H̃0(X) =

Ker ε∗ = 0. Conversly if H̃0(X) = 0, then H0(X) = H̃0(X)⊕Z ∼= Z, so X is
path-connected by the corollary 3.1.5.

Notice that for empty space reduced homology groups are not defined.

Suppose (C, ε) and (C ′, ε′) are augumented chain complexes. The chain
mapping of augmented complexes f : (C, ε) → (C ′, ε′) is a chain mapping
that commutes with augmentation. Again this definition reduces to f being
a chain mapping for which the diagram

C0

ε

&&MM
MM

MM
MM

MM
MM

M

f0

��

Z

C ′
0

ε′

88qqqqqqqqqqqqq

commutes. It follows that f maps C̃ to C̃ ′, hence there is an induced mapping
f∗ : H0(C̃) → H0(C̃ ′).
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Suppose

0 // C ′ f // C
g // C // 0

is a short exact sequence of chain complexes, where C ′ and C are augmented
and f preserves augmentation. Then the diagram

0

��

0

��

0

��

0 // C̃ ′,
f̃ //

��

C̃
g| //

��

C //

��

0

0 // C ′ f //

ε′

��

C
g //

ε
��

C //

��

0

0 // Z id //

��

Z //

��

0 //

��

0

0 0 0

is commutative. Moreover all columns are exact, as well as the middle and
bottom rows. It turns out that this implies that also the upper row is exact.
This follows from more general result.

Lemma 3.1.7. Suppose

. . . // 0 //

��

0 //

��

0 //

��

. . .

. . . // An−1
//

��

An
//

��

An+1
//

��

. . .

. . . // Bn−1
//

��

Bn
//

��

Bn+1
//

��

. . .

. . . // Cn−1
//

��

Cn
//

��

Cn+1
//

��

. . .

. . . // 0 // 0 // 0 // . . .

is a commutative diagram of abelian groups and homomorphisms. Assume
also that all columns are exact and the middle row is exact. Then the upper
row is exact if and only if lower row is exact.

Proof. Exercise 3.4.
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Hence it follows that in the situation above the sequence

0 // C̃ ′
f | // C̃

g| // C // 0

is the short exact sequence of chain complexes and chain mappings. From
the theorem 2.2.5 it follows that there is a long exact sequence in homology

. . . // Hn+1(C) ∂ // Hn(C
′)

f∗ // Hn(C)
g∗ // Hn(C) ∂ // Hn−1(C

′) // . . .

. . . // H1(C) ∂ // H0(C̃ ′)
f∗ // H0(C̃)

g∗ // H0(C) // 0 ,

called the reduced long homology sequence of the original exact se-
quence

0 // C ′ f // C
g // C // 0.

Let us apply this results to the singular homology. Suppose (X,A) is a
topological pair and A 6= ∅. Then there is exact sequence

0 // C(A)
i♯ // C(X)

j♯ // C(X,A) // 0,

where C(A) and C(X) are augmented. Moreover it is easy to check that
inclusion i♯ commutes with augmentation. Hence by the results above we
obtain the reduced long singular homology sequence

. . . // Hn+1(X,A)
∂ // Hn(A)

i∗ // Hn(X)
j∗ // Hn(X,A)

∂ // Hn−1(A) // . . .

. . . // H1(X,A)
∂ // H̃0(A)

i∗ // H̃0(X)
j∗ // H0(X,A) // 0 .

Notice that the chain mapping f♯ : C(X) → C(Y ) induced by any continuous
mapping f : X → Y preserves augmentation, hence induces homomorphism
f∗ : H̃0(X) → H̃0(Y ).

Reduced homology sequence is natural with respect to chain mappings
that preserve augmentation. In particular in case of singular homology it is
natural with respect to the mappings induced by continuous mappings.

In the end of this section let us compute the singular homology of a
singleton space X = {x}. It is clear that for every n ∈ N there is a single
mapping σn : ∆n → X , so Cn(X) is a free abelian group generated by a
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single element σn, in particular isomorphic to Z. Clearly ∂i(σn) = σn−1 for
all n ≥ 1 and i = 0 . . . , n, so

∂(σn) =

n∑

i=0

(−1)nσn−1 =

{
σn−1, if n is even

0, if n is odd

Hence the complex C(X) is a sequence

. . . // Z = C2n+1
0 // Z = C2n

id // Z = C2n−1
// . . . // Z = C1

0 // Z = C0
0 // 0.

Easy computations and proposition 3.1.6 show that

Hn(X) = 0 for n > 0

H0(X) = Z

H̃n(X) = 0.

3.2 Homotopy axiom

Homotopy axioms asserts that homotopic mappings induce the same homo-
morphism in the homology. Precisely put

Proposition 3.2.1. Suppose f, g : (X,A) → (Y,B) are homotopic as map-
pings of pairs i.e. there exists a mapping F : (X×I, A×I) → (Y,B) of pairs
for which

F (x, 0) = f(x),

F (x, 1) = g(x)

for all x ∈ X. Then

f∗ = g∗ : Hn(X,A) → Hn(Y,B), n ∈ N.

In the absolute case the same is true for reduced groups

Suppose f, g : (X,A) → (Y,B) and F : (X × I, A× I) → (Y,B) is a ho-
motopy between f and g. For a singular simplex σ : ∆n → X we have a
homotopy F ◦ (σ× id) : ∆n × I → Y between f♯(σ) and g♯(σ). Now ∆× I is
not a simplex, but it is a prism, which is a polyhedron, i.e. can be triangu-
lated, so that the bottom and the top (which are both n-simplices) preserve
their simplicial structure.
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To be precise bottom and the top are both simplices with vertices vi =
(ei, 0) and v′i, i ∈ {0, . . . , n}. It can be verified that the ordered n + 1-
simplices [v0, . . . , vi, v

′
i, . . . , v

′
n], i = 0, . . . , n are really geometrical simplices

and form a simplicial complex, which is a triangulation of ∆n × I. We will
not prove this and leave this claim as an exercise for the interested reader,
since we really don’t need this fact, it merely provides us with the motivation
and idea for the proof, which works on the formal algebraic level nevertheless.

Inspired by this for every σ ∈ Singn(X) we define σi : ∆n+1 → X × I
by restricting σ × id on the subset [v0, . . . , vi, v

′
i, . . . , v

′
n]. To be more precise

define αi = αn
i : ∆n+1 → ∆n× I to be the unique convex mapping that maps

vertices (e0, . . . , en+1) to the points (v0, . . . , vi, v
′
i, . . . , v

′
n) in that order. Such

a mapping clearly exists, since the prism ∆n × I is a convex subset of Rn+1.
Then define

σi = (σ × id) ◦ αi.

Next we define so-called prism operator Pn : Cn(X) → Cn+1(Y ) for
every n ∈ N. On the generators we assert

Pn(σ) =
n∑

i=0

(−1)i(F ◦ σi).

Claim: For all n ∈ N

∂n+1Pn = f♯ − g♯ − Pn−1∂n.

Geometrically we can think of the left side of this equation representing the
whole boundary of the prism (the top, the bottom, and horizontal sides),
while the right side is the signed sum of the bottom, top and all horizontal
sides.

Proof of the claim:

∂n+1Pn(σ) =
n+1∑

j=0

n∑

i=0

(−1)i+j(F ◦ σi ◦ εj) =
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∑

j≤i

(−1)i+jF ◦ (σ × id)[v0, . . . , v̂j, . . . , vi, v
′
i, . . . , v

′
n]+

∑

j≥i

(−1)i+j+1F ◦ (σ × id)[v0, . . . , vi, v
′
i, . . . , v̂j , . . . , v

′
n],

where we switched index j to j − 1 in the second sum.
Now the terms with i = j cancel out, except for the first term F ◦ (σ ×
id)[v′0, . . . , v

′
n], which is g◦σ = g♯(σ) and the last term−F ◦(σ×id)[v0, . . . , vn],

which is −f♯(σ). Let us look closely why this happens. For every i = 0, . . . n
let

xi = [v0, . . . , v̂i, v
′
i, . . . , v

′
n],

yi = [v0, . . . , vi, v̂
′
i, . . . , v

′
n].

Then xi+1 = yi for all i = 0, . . . , n− 1. Moreover every xi occurs in the sum
above with plus-sign, while every yi occurs with the minus-sign. Hence x1

and y0 cancel each other out, x2 and y1 also cancel each other and so on,
with the last pair being xn, yn−1.

What about P∂n? Now

(σεj)i = (σ × id) ◦ (εj × id) ◦ αn−1
i ,

where

(εj × id) ◦ αn−1
i =

{
[v0, . . . , v̂j, . . . , vi+1, v

′
i+1, . . . , v

′
n], if j ≤ i,

[v0, . . . , vi, v
′
i, . . . , v̂j, . . . , v

′
n], if j > i.

Hence

P∂n(σ) =
∑

j≤i<n

(−1)i(−1)j(F ◦ σ × id)[v0, . . . , v̂j, . . . , vi+1, v
′
i+1, . . . , v

′
n]+

∑

i<j≤n

(−1)i(−1)j(F ◦ σ × id)[v0, . . . , vi, v
′
i, . . . , v̂j, v

′
n] =

=
∑

j<i≤n

(−1)i+j+1(F ◦ σ × id)[v0, . . . , v̂j , . . . , vi, v
′
i, . . . , v

′
n]+

+
∑

i<j

(−1)i+j(F ◦ σ × id)[v0, . . . , vi, v
′
i, . . . , v̂j, v

′
n].

Thus
∂n+1Pn(σ) = g♯(σ)− f♯(σ)− P∂n.
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Now if σ ∈ Cn(A), it follows by definitions that σi ∈ Cn+1(A× I), hence
F◦σi ⊂ Cn+1(B). In other words Pn maps Cn(A) into Cn+1(B), hence induces
a homomorphism P n : Cn(X,A) → Cn+1(Y,B). The formula ∂n+1Pn = f♯ −
g♯ − Pn−1∂n. implies the formula

∂n+1P n = f♯ − g♯ − P n−1∂n

in quotient groups.

The mappings P n is an example of what is generally known as the chain
homotopy.

Definition 3.2.2. Suppose f, g : C → C ′ are chain mappings between chain
complexes. The collection H = (Hn)n∈N of homomorphisms Hn : Cn → C ′

n+1

is called a chain homotopy between f and g if

∂′
n+1Hn +Hn−1∂n = fn − gn.

In this case we say that f and g are chain homotopic.

We have shown that f♯, g♯ : C(X,A) → C(Y,B) are chain homotopic chain
mappings.
The homotopy axiom follows now from the following general result.

Lemma 3.2.3. Suppose f, g : C → C ′ are chain homotopic. Then

f∗ = g∗ : Hn(C) → Hn(C
′)

for all n ∈ N.

Proof. Suppose c ∈ Zn(C) is a cycle. Then

f(c)− g(c) = ∂′H(c) +H∂(c) = ∂′H(c),

so [f(c)] = [g(c)] in homology.

The claim for the reduced case follows easily, since f∗ : H̃0(X) → H̃0(Y )
is just the restriction of f∗ : H0(X) → H0(Y ) to a subgroup.

A mapping f : (X,A) → (Y,B) is called a homotopy equivalence if
there exists g : (Y,B) → (X,A) such that f ◦ g ≃ id(Y,B), g ◦ f ≃ id(X,A) (as
mappings of pairs).
Mapping g is called a homotopy inverse of f . The pairs (X,A) and (Y,B)
are said to have the same homotopy type if there exists homotopy equiv-
alence f : (X,A) → (Y,B).
It is clear that homeomorphic pairs has the same homotopy type.

101



Example 3.2.4. 1) Rn has the same homotopy type as B
n
, Bn or a singleton

{a}.
In fact every non-empty convex subset C of a finite dimensional vector space
have the homotopy type of a singleton space. Moreover if x ∈ C the pair
(C, x) has the same homotopy type as the pair ({x}, {x}) (Exercise).
2) Rn \{0} has the same homotopy type as Sn−1 or a punctured ball B

n \{0}.
(Exercise).
3) Mobius band has the same homotopy type as S1 (Exercise).

Corollary 3.2.5. Suppose f : (X,A) → (Y,B) is a homotopy equivalence.
Then

f∗ : Hn(X,A) → Hn(Y,B)

is an isomorphism. The same is true for reduced groups in the absolute case.
In particular spaces of the same homotopy type have the same homology
groups.

Proof. Suppose g : (Y,B) → (X,A) is a homotopy inverse of f . Then g ◦f ≃
id as mappings (X,A) → (X,A), so by homotopy axiom

g∗ ◦ f∗ = (g ◦ f)∗ = id: Hn(X,A) → Hn(X,A) for all n ∈ N.

Similarly f∗ ◦ g∗ = id: Hn(Y,B) → Hn(Y,B). Hence g∗ is the inverse of
f∗.

Recall that a topological space X is called contractible, if identity map-
ping id : X → X is homotopic to a constant mapping x0 : X → X for some
x0 ∈ X . This means precisely that there exists a mapping H : X × I → X
such that H(x, 0) = x, H(x, 1) = x0 for all x ∈ X .
If this homotopy is stable at x0 i.e. H(x0, t) = x0 for all t ∈ I, we say that
the pair (X, x0) is contractible.

Lemma 3.2.6. The space X is contractible if and only if it has the same
homotopy type as a singleton space {x}.
Similarly the pair (X, x) is contractible if and only if it has the same homo-
topy type as the pair ({x}, {x}).
Every contractible space is path-connected.

Proof. Exercise 3.12.

Example 3.2.7. As we already noticed Rn, B
n
and Bn are contractible.

More generally any convex subset C of a finite dimensional vector space V
is contractible.
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Example 3.2.8. Consider the so-called ”topological comb”-space X defined
as

X =
⋃

n∈N+

{1/n} × I ∪ {0} × I ∪ I × {0}.

Then X is contractible. Let x0 = (0, 1). Then the pair (X, x0) is not con-
tractible. Proofs are left as an exercise.

Since spaces with the same homotopy type have the same homology and
the homology of the singleton space is already calculated, we obtain the
following result.

Corollary 3.2.9. Suppose X is a contractible space. Then

Hn(X) = 0 for n > 0,

H0(X) ∼= Z,

H̃0(X) = 0.

In particular this is true for X = Rn,∆n, B
n
, Bn for all n ∈ N.

3.3 Excision

Excision property is perhaps the most powerful and important property of
the singular homology. It makes homology groups highly computible and
”well-behaved”.
Formally Excision axiom is the following statement

Theorem 3.3.1. Suppose A ⊂ U ⊂ X. If A ⊂ intU , then the inclusion
i : (X \A,U \ A) → (X,U) induces an isomorphism

i∗ : Hn(X \ A,U \ A) → Hn(X,U)

for all n ∈ Z.

In other words under the assumptions of the theorem you can ”cut out ”
or ”excite” the set A from the pair (X,U) without altering the homology.
Before proving this theorem let us give an example of its application, which
will illuminate its importance and the way this property is applied in the
practice.
Suppose one wants to calculate the homology of a sphere Sn. It is enough to
compute reduced homology groups. Let

U = Sn \ {en+1} ⊂ Rn+1.
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U is homeomorphic to Rn (stereographic projection from the ”north pole”,
exercise 3.15a or Topology II), in particular contractible, so its reduced ho-
mology groups are trivial. From the long exact reduced homology sequence

H̃m(U) = 0 // H̃m(S
n)

j∗ // Hm(S
n, U)

∂ // H̃m−1(U) = 0

we see that j∗ : H̃m(S
n) ∼= Hm(S

n, U) is an isomorphism, so it is enough to
compute Hm(S

n, U). Let

A = {x = (x1, . . . , xn+1) ∈ Sn | xn+1 < 0}.
Then A = {x ∈ Sn | x ≤ 0} ⊂ U = intU , so excision axiom implies that

Hm(S
n, U) ∼= Hm(S

n \A,U \ A).
Now Sn \A is a closed upper hemisphere {x ∈ Sn|xn+1 ≥ 0}, which is home-
omorphic to the closed ball B

n
(exercise 3.15b). Under this homeomorphism

U \A corresponds to the punctured ball B
n \ {0}. Hence

Hm(S
n \ A,U \ A) ∼= Hm(B

n
, B

n \ {0}).
The inclusion of pairs (B

n
, Sn−1) → (B

n
, B

n\{0}) is a homotopy equivalence
of pairs (exercise 3.13), so it induces an isomorphism

Hm(B
n
, B

n \ {0}) ∼= Hm(B
n
, Sn−1).

On the other handB
n
is contractible, so its reduced homology groups are triv-

ial. From the long exact reduced homology sequence of the pair (B
n
, Sn−1)

we see that
Hm(B

n
, Sn−1) ∼= H̃m−1(S

n−1).

Thus we have proved that for all m ∈ N

H̃m(S
n) ∼= H̃m−1(S

n−1).

Noticed that if we would use ordinary groups instead of reduced, we would
have to deal with exceptional case m = 0, 1 and the computations would be
more involved, complicated and un-symmetric. This is a typical illustration
of the convenience of reduced groups.

Now we can proceed by induction. We already know the reduced homol-
ogy groups of S0 (exercise 3.7) which are

H̃m(S
0) = 0 for m 6= 0,

H̃0(S
0) ∼= Z.

Hence the previous computations imply by induction the following important
result (and the first interesting example of non-trivial homology groups).
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Theorem 3.3.2. Singular homology groups of the sphere Sn, n ∈ N are the
following.

Hm(S
n) =





Z, if m = n 6= 0 or m = 0, n 6= 0

0, if m 6= n, 0

Z⊕ Z, if m = n = 0.

.

Corollary 3.3.3. If n 6= m spheres Sn and Sm don’t have the same homo-
topy type. In particular they are not homeomorphic. Any sphere Sn is not
contractible.

Also we immediately obtain the promised classical result.

Corollary 3.3.4. Euclidean spaces Rn and Rm are not homeomorphic if
n 6= m.

Proof. Suppose f : Rn → Rm is a homeomorphism. By composing it with
a translation, if necessary, we may assume that f(0) = 0. Hence f induces
a homeomorphism Rn \ {0} → Rm \ {0}. In particular these spaces have
the same homotopy type. But Rn \ {0} has the same homotopy type as
Sn−1, so we obtain that Sn−1 and Sm−1 have the same homotopy type. This
contradicts previous corollary.

This result can be slightly generalized - in the exercise 3.16 you are asked
to prove that if U ⊂ Rn and V ⊂ Rm are both open, non-empty and there is
a homeomorphism f : U → V , then n = m.

Another corollary is that Sn−1 is nor a retract of B
n
. Recall that a

continuous mapping p : X → A is called a retraction if A is a subspace of
X and p|A = idA. In other words if i : A → X denotes the inclusion, p is
retraction if and only if p ◦ i = idA. If p : X → A is a retraction, we say that
A is a retract of X .

Corollary 3.3.5. Sn−1 is not a retract of B
n
.

Proof. Suppose p : B
n → Sn−1 is such that p ◦ i = idA. This implies in

particular that

p∗ ◦ i∗ = id: H̃n−1(S
n−1) → H̃n−1(S

n−1).

It follows that i∗ : H̃n−1(S
n−1) → H̃n−1(B

n
) is an injection. This is however

not possible, since H̃n−1(S
n−1) ∼= Z 6= 0, while H̃n−1(B

n
) = 0.
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It remains to prove the excision property. The proof is rather long and te-
dious. In fact we prove more general result stated below in the theorem 3.3.6.

Suppose U = (Ui)i∈I is a covering of a topological space X . Denote by
CU

n (X) a free subgroup of Cn(X) generated by those simplices σ : ∆n → X
with the property σ(∆n) ⊂ Ui for some i ∈ I. It is elementary to check that
the collection of these subgroups form a chain subcomplex CU(X) of C(X).
The homology groups of this chain complex are denoted HU

n (X).

Theorem 3.3.6. Suppose U is a covering of X with the property that the
collection {intU |U ∈ U} is also a covering of X. Then the inclusion mapping
i : CU(X) → C(X) induces isomorphisms in homology for every n ∈ N,

i∗ : H
U
n (X) ∼= Hn(X).

Let us first check that the this theorem implies excision property. Suppose
A ⊂ U ⊂ X is such that A ⊂ intU . Denote V = X \ A, U = {U, V }. Then

int V = int(X \ A) = X \ A, thus

int V ∪ intU = X,

and the covering U satisfies conditions of the theorem 3.3.6. Hence i : C(V )+
C(U) ⊂ C(X) induces isomorphisms in homology. Consider the commutative
diagram

0 // C(U) //

id
��

C(V ) + C(U) //

i
��

(C(V ) + C(U))/C(U) //

��

0

0 // C(U) // C(X) // C(X,U) // 0

with exact rows. By the naturality of the long homology sequence we obtain
a commutative diagram

Hn(U) //

id
��

HU
n (X) //

i∗
��

Hn((C(V ) + C(U))/C(U)) //

��

Hn−1(U) //

id
��

HU
n−1(X)

i∗
��

Hn(U) // Hn(X) // Hn(X,U) // Hn−1(U) // Hn−1(X).

with exact rows. Now i∗ is isomorphism for all n ∈ N, and the identity
mapping id : Hn(U) → Hn(U) is trivially isomorphism. By the five-lemma it
follows that also induced mapping Hn((C(V ) + C(U))/C(U)) → Hn(X,U)
is an isomorphism.
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Now consider a mapping j : C(V )/C(U∩V ) → (C(V )+C(U))/C(U) induced
by the inclusion C(V ) →֒ C(V )+C(U). Notice that C(U∩V ) = C(U)∩C(V ).
By the second isomorphism theorem of the group theory (look up
Algebra I, if you don’t remember it or prove yourself) j is a (chain) isomor-
phism. In particular it induces isomorphisms in homology groups.
Collecting all these data together gives us the isomorphism Hn(V, V ∩ U) ∼=
Hn(X,U) induced by the inclusion, for all n ∈ N. Since V = X \ A and
V ∩ U = U \ V , this is precisely the excision axiom.

Hence it remains to prove the theorem 3.3.6. We prove it by showing that
i : CU(X) → C(X) is a chain homotopy equivalence i.e. there is a chain
mapping p : C(X) → CU(X) such that p ◦ i and i ◦ p are chain homotopic
to the identity mapping. Since chain homotopic mappings induce the same
homorphisms in homology (lemma 3.2.3), it follows that

p∗ ◦ i∗ = id, i∗ ◦ p∗ = id,

so i∗ is indeed an isomorphism.

The construction of j and homotopies involved is done in several steps.
Suppose V is a finite-dimensional vector space and D ⊂ V is a convex subset.
Denote by LCn(D) a subgroup of Cn(D) generated by singular n-simplices
f : ∆n → D, which are affine mappings. Notice that such a mapping is
uniquely determined by (n+ 1)-tuple {f(e0), . . . , f(en)} ∈ Dn+1. Since D is
convex, conversely any element (d0, . . . , dn) of Dn+1 defines a unique affine
mapping f : ∆n → D with f(ei) = di. Thus we might as well think of LDn

as a free group generated by the set Dn+1. Since

∂(d0, . . . , dn) =

n∑

i=0

(d0, . . . , d̂i, . . . dn)

subgroups LCn(D) define a chain subcomplex LC(D) of C(D). Notice that
LC0(D) = C0(D), so consequently the chain complex LC(D) had an aug-
mentation ε : LC0(D) → Z defined by ε(d0) = 1. Fix a point b ∈ D and
define for every n ∈ N a homomorphism b : LCn(D) → LCn+1(D) by

b(d0, . . . , dn) = (b, d0, . . . , dn).

Straightforward calculation shows (exercise 3.18) that

(∂n+1b+ b∂n)(x) =

{
x, if n > 0,

x− ε(x)b, if n = 0.
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It follows that the restriction of b to L̃Cn is a chain homotopy between the
identity mapping of L̃C(D) and the zero mapping, which implies that L̃C(D)
is acyclic.

Next we define a subdivision homomorphism Sn : LCn(D) → LCn(D) by
induction on n. For n = 0 let S0 = id. Suppose n > 0 and Sn−1 is defined.
Suppose f = (f0, . . . , fn) a generator of LCn(D). Let b be a barycentre of
∆n, denote bf = f(b). Define

Sn(f) = bf (Sn−1(∂f))

and extent Sn to a unique homomorphism LCn(D) → LCn(D).
Next we build a chain homotopy Hn : LCn(D) → LCn+1(D) between S and
id. If you pay attention, you might notice at this point that we did not prove
that S is a chain mapping. However it turns out that the existence of H
already implies that S is chain mapping (exercise 3.19).

We define H by induction on n. For n = 0 we assert H0 = 0 and for
n > 0

Hn(f) = bf (f −Hn−1∂f).

Next we check by induction if ∂n+1Hn +Hn−1∂n = id−S. For n = 0 this is
clear, since H0 = H−1 = id−S = 0. Assume the formula is true for n > 0.
Then

∂n+1Hn(f) = ∂n+1(bf(f−Hn−1∂f)) = f−Hn−1∂f−bf (∂n(f−Hn−1∂f)), since

∂n+1bf = id−bf∂n.

Notice that this is true, because n ≥ 1. On the other hand by induction we
have

∂nHn−1 = id−S −Hn−2∂n−1,

so
∂n(f −Hn−1∂f) = ∂nf − (∂nf − S∂f −Hn−2∂n−1∂nf) = S∂f.

Also bf (S∂f) = S(f) by definition. Hence

∂n+1Hn(f) = f −Hn−1∂f − bf (S∂f) = f − S(f)−Hn−1∂(f),

so H is a chain homotopy between id and S.

Next we finally look at the general case. LetX be an arbitrary topological
space. Define barycentric subdivision operator S : Cn(X) → Cn(X) on
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generators by Sσ = σ♯S(∆n). Here S(∆n) is the image of id : ∆n → ∆n,
which is an element of LCn(∆n), so S : LCn(∆n) → LCn(∆n) ⊂ Cn(∆n) is
already defined above.
Notice that as an element of Cn(X) Sσ is a signed sum of the restrictions of
σ on all the different simplices in the first barycentric division of ∆n.
We also define a homotopy Hn : Cn(X) → Cn+1X by

Hn(σ) = σ♯(Hn(∆n)),

where again Hn(∆n) is the image of id : ∆n → ∆n under already defined
Hn : LCn(∆n) → LCn+1(∆n) ⊂ Cn(∆n). The corresponding property of this
homotopy shows that H is then a chain homotopy between id and S (exercise
3.21), which also shows that S is a chain mapping (exercise 3.20).

Suppose U is a covering of X such that intU = {intU | U ∈ U} is also a
covering of X .
Let σ ∈ Singn(X) be a singular n-simplex. Since σ−1(intU) is an open
covering of ∆n, there exists m ∈ N such that the m-th barycentric division of
∆n is finer than this covering. It follows that iterated barycentric subdivision
operator Sm maps σ onto an element of CU

n (X). Of course m depends on σ.
For every σ ∈ Singn(X) we denote by m(σ) the smallest integer ∈ N with
this property. Notice that for every face ∂i

n(σ) we have

m(∂i
n(σ)) ≤ m(σ).

Also for any m ≥ m(σ) evidently Sm(σ) ∈ CU
n (X).

Exercise 3.15 implies that

Dm =
∑

0≤i<m

HSi

is a chain homotopy from id to Sm for every m ∈ N.
We define D : Cn(X) → Cn+1(X) for every n ∈ N by D(σ) = Dm(σ)(σ). Now

(∂D +D∂)(σ) = (∂Dm(σ)(σ) +Dm(σ)(∂σ))−Dm(σ)(∂(σ)) +D(∂(σ)) =

= (σ − Sm(σ))−Dm(σ)(∂(σ)) +D(∂(σ)) = σ − p(σ),

where we used the equation

∂Dm(σ) +Dm(σ)∂ = id−Sm(σ)
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and denoted p(σ) = Sm(σ) + Dm(σ)(∂(σ)) − D(∂σ). We claim that p(σ) ∈
CU

n (X). This is clear for the term Sm(σ). For all i ∈ {0, . . . , n} we have
m(∂iσ) ≤ m(σ), so

Dm(σ)(∂
iσ)−D(∂iσ) = Dm(σ)(∂

iσ)−Dm(∂iσ)(∂iσ) =
∑

m(∂iσ)≤j<m(σ)

HSj(∂σ).

Now for j ≥ m(∂iσ) Sj(∂iσ) ∈ CU
n (X), as we already noticed above. Also

it is easy to see that homotopy H maps CU
n (X) into itself (check), so the

claim is proved. If we now denote by p the mapping C(X) → CU(X) de-
fined by p, we see that D is then a homotopy between id and i ◦ p, where
i : CU(X) → C(X) is an inclusion.
In a usual way exercise 3.20 implies that i ◦ p, hence p itself, are chain
mappings. Moreover by the definition of p it follows easily that p ◦ i = id,
because m(σ) = 0 = m(∂iσ) for σ ∈ CU(X), so Sm(σ)(σ) = id(σ), and
Dm(σ)(∂σ) = D(∂σ).

We have thus prove that p is a chain homotopy inverse of i. This concludes
the proof of the theorem 3.3.6, hence also the proof of the excision property.

3.4 The equivalence of the simplicial and sin-

gular homologies

In this section we will finally prove the long promised result, that guarantees,
that simplicial and singular homologies give the same result for the (finite)
∆-complexes.

First we investigate the structure of Hm(∆n, ∂∆n) for all m,n ∈ N. Of
course we can already compute from the long exact reduced homology se-
quence of the pair (∆n, ∂∆n) that

∂ : Hm(∆n, ∂∆n) → H̃m−1(∂∆n)

is an isomorphism, since ∆n is contractible, so its reduced homology is zero
in all dimensions. Also, ∂∆n is homeomorphic to the sphere Sn−1, and we
calculated the homology of Sn−1 in the previous section. Hence the theorem
3.3.2 implies that

Hm(∆n, ∂∆n) ∼=
{
Z, if m = n

0, if m 6= n
.
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However this is not enough - we need to now which element ofHn(∆n, ∂∆n)
is a free generator of this group.
Consider the singular n-simplex id : ∆n → ∆n, which is an element of Cn(∆n).
Then its class in the quotient group Cn(∆n, ∂∆n) is a cycle, since ∂(id) ∈
Cn(∂∆n). Hence there exists its homology class, which we will denote by
[id] ∈ Hn(∆n, ∂∆n). It turns out that this element is a free generator of
Hn(∆n, ∂∆n). This is not surprising, keeping in my mind the result we want
to prove, since on the simplicial level Hn(K(∆n), K(∂∆n)) is trivially seen
to be a free group generated by the n-simplex ∆n (or rather its class). Since
i(∆n) = id for the inclusion i : Cn(K(∆n)) → Cn(∆n), id MUST be a gener-
ator on the singular homology level, if we want i to induce an isomorphism
in homology.

Proposition 3.4.1. [id] is a generator of the free group Hn(∆n, ∂∆n) ∼= Z.

Proof. We prove the claim by induction on n. For n = 0 the pair (∆n, ∂∆n)
is just a singleton ({0}, ∅) = {0}. Now H0({0}) is a free group generated by
a point [0], so we are done.

Suppose n > 0. Denote

Λ0
n =

⋃

i>0

∂i
n∆n,

which is thus the union of all n−1-faces of ∆n, except for the 0-th face. The
homotopy α : ∆n × I → ∆n, which contracts ∆n into the point e0,

α(x, t) = (1− t)x+ te0

has the property α(Λ0
n × I) ⊂ Λ0

n (exercise 3.24). In particular Λ0
n is con-

tractible, so its reduced groups are trivial, just as reduced groups of ∆n.
Hence from the long exact reduced homology sequence of the pair (∆n,Λ

0
n)

it follows that also Hm(∆n,Λ
0
n) = 0 for all m ∈ Z. Consider the long exact

homology sequence of the triple (∆n, ∂∆n,Λ
0
n),

Hn(∆n,Λ
0
n) // Hn(∆n, ∂∆n)

∂ // Hn−1(∂∆n,Λ
0
n)

i∗ // Hn−1(∆n,Λ
0
n).

It follows that ∂ : Hn(∆n, ∂∆n) → Hn−1(∂∆n,Λ
0
n) is an isomorphism for

all m ∈ N. By the definition of the boundary operator in the long exact
homology sequence it is easy to see that

∂([id]) = [∂(id)] = [

n∑

i=0

∂i(id)] = [∂0 id] ∈ Hn−1(∂∆n,Λ
0
n),
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where we also used the obvious fact that ∂i id ∈ C(Λ0
n) for i > 0. On the other

hand there is a mapping of pairs ε0 : (∆n−1, ∂∆n−1) → (∂∆n,Λ
0
n), and clearly

ε(idn−1) = ∂0 id. By induction [idn−1] is a generator of Hn−1(∆n, ∂∆n−1), so
to conclude the proof it it enough to prove that ε∗ : Hn−1(∆n, ∂∆n−1) →
Hn−1(∂∆n,Λ

0
n) is an isomorphism. Consider the commutative diagram

Hn−1(∂∆n,Λ
0
n)

Hn−1(∆n, ∂∆n−1)

ε∗
44hhhhhhhhhhhhhhhhhh

ε∗

**VVV
VVV

VVV
VVV

VVV
VVV

Hn−1(∂∆n \ {e0},Λ0
n \ {e0})

i∗

OO
,

where we denote by ε also the mapping (∆n−1, ∂∆n−1) → (∂∆n \ {e0},Λ0
n \

{e0}) with restricted image. By choosing A = {e0}, U = Λ0
n we see that

A = A ⊂ intU = {x ∈ ∂∆n|x0 > 0}, so i : (∂∆n \ {e0},Λ0
n \ {e0}) →

(∂∆n,Λ
0
n) is an excision mapping, in particular i∗ : Hn−1(∂∆n \ {e0},Λ0

n \
{e0}) → Hn−1(∂∆n,Λ

0
n) is an isomorphism. Hence it remains to show that

ε∗ : Hn−1(∆n−1, ∂∆n−1) → Hn−1(∂∆n \ {e0},Λ0
n \ {e0}) is an isomorphism.

Define λ : (∂∆n \ {e0},Λ0
n \ {e0}) → (∆n−1, ∂∆n−1) by

λ(x0, . . . , xn) =
( x1

1− x0
, . . . ,

xn

1− x0

)
.

We leave it to the reader to prove that λ is well-defined and is a homotopy
inverse of ε.
Since ε is a homotopy equivalence, it follows that ε∗ is an isomorphism.

Lemma 3.4.2. Suppose K is a finite ∆-complex and n ∈ N. Then the
inclusion mapping i : C(Kn, Kn−1) → C(|Kn|, |Kn−1|) induces isomorphism

i∗ : Hm(K
n, Kn−1) → Hm(|Kn|, |Kn−1|)

in homology for every m ∈ N

Proof. The homology groups Hm(K
n, Kn−1) are calculated in the exercise

2.16. The result is that Hm(K
n, Kn−1) = 0 for m 6= n and Hn(K

n, Kn−1) is
a free abelian group generated by the set

{[σ] | σ ∈ Kn/ ∼}.

Since i(σ) = fσ (the characteristic mapping of σ in |K|), the lemma is proved
if we can show that Hm(|Kn|, |Kn−1|) = 0 for m 6= n and Hn(|Kn|, |Kn−1|)
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is a free abelian group with the set of generators {[fσ] | σ ∈ Kn/ ∼]}.

For every geometrical n-simplex σ of |K| choose a point xσ ∈ int σ
(for instance one can choose a barycentre). Denote A = |Kn−1|, U =
|K| \ {xσ | σ ∈ Kn}. Then A is closed, U is open and A ⊂ U . The in-
clusion j : (|Kn|, |Kn−1|) → (|Kn|, U) induces isomorphisms in homology
for all dimensions (Exercise 3.13).

By excision the inclusion (|Kn| \ |Kn−1|, U \ |Kn−1|) → (|Kn|, U) in-
duces isomorphisms in homology. However (|Kn| \ |Kn−1|) is a disjoint union
of interiors int σ, where σ goes through all n-dimensional geometric sim-
plices of K and we know that the restriction of the characteristic mapping
fσ : int∆n → int σ is a homeomorphism for all σ ∈ Kn/ ∼. Hence

⊕((fσ)∗) : ⊕Hm(int∆n, int∆n \ {b}) → Hm(|Kn|, U)

is an isomorphism for all m ∈ N. Now the inclusion (int∆n, int∆n \ {b}) →
(∆n,∆n \ {b}) satisfies the excision condition - choose A = ∂∆n and U =
∆n \ {b}), and the diagram

Hm(int∆n, int∆n \ {b})
(fσ)∗

**TTT
TTT

TTT
TTT

TTT

∼=

��

Hm(|Kn|, U)

Hm(∆n,∆n \ {b})

(fσ)∗
44jjjjjjjjjjjjjjj

,

commutes (since it commutes on the level of spaces). Also inclusion (∆n, ∂∆n) →
(∆n,∆n \ {b}) induces isomorphism in homology (exercise 3.13), so we can
substitute Hm(∆n,∆n \ {b}) with Hm(∆n, ∂∆n). Combining all these result
shows that

k = ⊕((fσ)∗) : ⊕Hm(∆n, ∂∆n) → Hm(|Kn|, |Kn−1|)

is an isomorphism. Previous lemma then implies that Hm(|Kn|, |Kn−1|) = 0
for m 6= n and Hn(|Kn|, |Kn−1|) is a free abelian group with the set of
generators {[fσ] | σ ∈ Kn/ ∼}.

Theorem 3.4.3. Suppose (K,L) is a pair of ∆-complexes. Then the inclu-
sion i : C(K,L) → C(|K|, |L|) induces isomorphisms in homology.
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Proof. The commutative diagram

Hn(L) //

i∗
��

Hn(K) //

i∗
��

Hn(K,L)
∂ //

��

Hn−1(L)

i∗
��

// Hn−1(K)

i∗
��

Hn(|L|) // Hn(|K|) // Hn(|K|, |L|) ∂ // Hn−1(|L|) // Hn−1(|K|)

with exact rows and the five-lemma show that it it enough to prove the
absolute case.

We will prove the theorem for finite K. The general case is left to the
reader (exercises 3.25, 3.26).
The proof is by induction - we show that the theorem is true for Kn for all
n ∈ N.

For n = 0 the claim follows from the previous lemma, since (K0, K−1) =
(K0, ∅).
Now suppose the claim is proved for n − 1. The following commutative
diagram with exact rows, the previous lemma and the five-lemma imply the
claim for n.

Hn+1(K
n,Kn+1)

∂ //

i∗∼=
��

Hn(K
n−1) //

i∗∼=
��

Hn(K
n) //

i∗
��

Hn(K
n,Kn−1) //

i∗∼=
��

Hn−1(K
n−1)

i∗
��

Hn+1(|Kn|, |Kn−1|) // Hn(|Kn−1|) // Hn(|Kn|) // Hn(|Kn|, |Kn−1|) // Hn−1(|Kn−1|)

The result is quite powerful indeed - in many cases the calculation of
simplicial homology is much simpler and concrete algebra concerning (finitely
generated) free abelian groups, and we have seen many examples of this. The
result also helps further investigation of the structure of homological groups.
As an example let us calculate the concrete generator for Hn(S

n), n > 0.

Example 3.4.4. Of course Sn ∼= ∂∆n+1 and we already know that

[∂ id] =

n∑

i=0

(−1)n+1[εin+1]

is a generator of Hn(∂∆n+1), since ∂ : Hn+1(∆n+1, ∂∆n+1) → Hn(∂∆n+1)
is an isomorphism and [id] is a generator of Hn+1(∆n+1, ∂∆n+1). Thus for
any homeomorphism f : ∂∆n+1

∼= Sn, the element f∗([∂ id]) is a generator
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of Hn(S
n), but it depends on the choice of the homeomorphism and in many

cases is inconvenient to use, since it does not have a simple and clear relation
to the structure of Sn.

Let

B+ = {x ∈ Sn|xn+1 ≥ 0},

B− = {x ∈ Sn|xn+1 ≤ 0}.
Define ι : Sn → Sn, ι(x0, . . . , xn, xn+1) = (x0, . . . , xn,−xn+1). Then ι is
clearly a homeomorphism which takes B+ to B− (and vice versa).
Exercise 3.16 shows that α : B+ → B

n
,

α(x) = (x1, . . . , xn)

is a homeomorphism. Choose any homeomorphism β : ∆n → B
n
, then f =

α−1 ◦ β : ∆n → B+ ⊂ Sn is a homeomorphism and can be thought of as an
element of Cn(S

n). Also g = ι ◦ f : ∆n → B− is a homeomorphism, that can
be identified with an element of Cn(S

n).
It is easy to see that the images of f and g intersect precisely at the ”equator”

Sn−1 = B+ ∩B− = {x ∈ Sn | xn+1 = 0.}

which is the image of the boundaries of ∆n under both mappings. Hence if we
take two n-simplices U and V and identify all their (n− 1)-faces i.e. ∂iU is
identified with ∂iV , we obtain a ∆-complex K such that |K| = Sn. Mappings
f and g are then precisely characteristic mappings of U and V .
Now ∂U = ∂V 6= 0 in Cn−1(K), so Hn(K) = Ker ∂n (since there are no
n + 1-simplices) and an element kU + lV ∈ Cn(K) is in the kernel of ∂n if
and only if

∂(kU + lV ) = (k + l)∂U = 0 i.e. if and only if k + l = 0.

Hence Hn(K) is a free abelian group generated on one element U −V . Using
the isomorphism i∗ : Hn(K) → Hn(|K|) we see immediately that [f − g] is a
generator of Hn(S

n).

Hence geometrically Hn(S
n) is generated by the ”upper hemisphere minus

lower hemisphere”.

An interesting corollary is that for the mapping ι∗ : Hn(S
n) → Hn(S

n)
induced by ι we have ι∗(x) = −x for all x ∈ Hn(S

n). Indeed it is enough to
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prove it for the generator [f − g], but ι♯(f) = ι ◦ f = g and ι♯(g) = ι ◦ g =
ι ◦ ι ◦ f = f , since ι ◦ ι = id. Hence

ι∗[f − g] = [g − f ] = −[f − g].

Using this fact it is now easy to prove (exercise 3.28) that for the antipodal
mapping h : Sn → Sn, h(x) = −x one has

h∗(x) = (−1)n+1x, x ∈ Hn(S
n)

3.5 Mayer-Vietoris sequence.

Mayer-Vietoris sequence is another way to formalize properties of the singu-
lar homology connected to the excision property. In some contexts it can be
very convenient from the technical point of view.

Algebraic motivation behind the Mayer-Vietoris sequence is quite simple.
Suppose A and B are both subgroups of an abelian group G. Then A+B =
{a + b | a ∈ A, b ∈ B} is also a subgroup of G. In general we cannot
expect this sum to be a direct sum A ⊕ B, since the intersection A ∩ B
might be non-trivial. Nevertheless there is a natural group homomorphism
j : A⊕ B → A+B defined by

j(a, b) = a + b.

Clearly j is a surjection. An element (a, b) ∈ A ⊕ B is in the kernel of j if
and only a+ b = 0 i.e. a = −b, in which case a, b ∈ A∩B. Hence if we define
i : A∩B → A⊕B by i(x) = (x,−x), then Im i = Ker j. Moreover one easily
sees that i is injection. Hence we have a short exact sequence

0 // A ∩ B i // A⊕ B
j // A+B // 0

of abelian groups and homomorphisms.

Suppose (C, ∂) is a chain complex and A,B ⊂ C are subcomplexes of C.
Then A ∩ B and A + B are also subcomplexes and, by the considerations
above, we have a short exact sequence

0 // An ∩ Bn
in // An ⊕ Bn

jn // An +Bn
// 0,

for every n ∈ N, where in and jn are defined as above. It is easy to check
that i = {in} and j = {jn} are chain mappings. Hence we have a short exact
sequence

0 // A ∩ B i // A⊕ B
j // A+B // 0
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of chain complexes and chain mappings. This induces long exact sequence

. . . // Hn+1(A +B) ∂ // Hn(A ∩B)
i∗ // Hn(A)⊕Hn(B)

j∗ // Hn(A+B) // . . . ,

in homology. Here we used the fact that homology commutes with direct
sums (Lemma 3.1.2).
Notice that the boundary operator in the long exact sequence is defined
as following. Suppose c ∈ A + B is a cycle. Then c = a + b for some
a ∈ A, b ∈ B (not necessarily unique) and ∂n(a) + ∂n(b) = 0. Then in the
long exact homology sequence

∂[c] = [∂na] = −[∂n(b)].

Not let us apply these constructions to the singular homology. Suppose
X is a topological space and U, V ⊂ X . Then C(U) ∩ C(V ) = C(U ∩ V ),
hence we have the long exact sequence

. . . // Hn+1(C(U) + C(V ))
∂ // Hn(U ∩ V )

i∗ // Hn(U)⊕Hn(V )

Hn(C(U) + C(V ))
∂ // Hn−1(U ∩ V ) // . . .

defined as above.
Now suppose inclusion i : C(U) + C(V ) → C(X) is such that it induces iso-
morphism i∗ in homology. In this case we call a triple (X ;U, V ) a proper
triad.
For example the theorem 3.3.6 implies that (X ;U, V ) is a proper triad if
intU ∪ int V = X .

We have proved the following result.

Proposition 3.5.1. Suppose (X ;U, V ) is a proper triad. Then there is an
exact sequence

. . . // Hn+1(X)
∂ // Hn(U ∩ V )

i∗ // Hn(U)⊕Hn(V )
j∗ // Hn(X)

∂ // Hn−1(U ∩ V ) // . . . ,

called the Mayer-Vietoris sequence of the triple (X ;U, V ).

Mayer-Vietoris sequence is easily seen to be natural with respect to the
mappings of proper triads. To be precise let (X ;U, V ) and (Y ;Z,W ) be
proper triads and suppose f : X → Y is a continuous mapping with f(U) ⊂
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Z, f(V ) ⊂ W . We also notate this as f : (X ;U, V ) → (Y ;Z,W ). Then the
diagram

. . . // Hn+1(X)
∂ //

f∗

��

Hn(U ∩ V )
i∗ //

f |∗

��

Hn(U)⊕Hn(V )
j∗ //

f |∗⊕f |∗

��

Hn(X)
∂ //

f∗

��

Hn−1(U ∩ V ) //

f |∗

��

. . .

. . . // Hn+1(Y )
∂ // Hn(Z ∩W )

i∗ // Hn(Z)⊕Hn(W )
j∗ // Hn(Y )

∂ // Hn−1(Z ∩W ) // . . .

commutes. The simple verification of this claim is left to the reader.

Example 3.5.2. As an example of the way Mayer-Vietoris sequence can be
applied, let us calculate a generator for S1 (again).
Consider open subsets U = S1 \{e2} and V = S1 \{−e2}. Then U ∪V = S1,
so the portion of Mayer-Vietoris sequence

H1(U)⊕H1(V )
j∗ // H1(S

1) ∂ // H0(U ∩ V )
i∗ // H0(U)⊕H0(V )

is exact. Both U and V are homeomorphic to the open interval ]0, 1[, hence
contractible. It follows that H1(U) = H1(V ) = 0, so H1(S

1) is isomorphic to
Im ∂ = Ker i∗ via the homomorphism ∂. Now U ∩ V is not path-connected
- it has two path-components - the set {x ∈ S1 | x1 > 0} and the set {x ∈
S1 | x1 < 0}. It follows that H0(U ∩ V ) = Z[e1] ⊕ Z[−e1] is a free abelian
group on 2 generators, where we choose as representatives of corresponding
path-components points e1 and −e1. On other hand U and V are both path-
connected and i∗[e1] = ([e1], [e1]) = y, i∗[−e1] = ([−e1], [−e1]) = ([e1], [e1]) =
y, so

i∗(n[e1] +m[−e1]) = (n+m)y.

Here we used the fact that both U and V are path-connected so the classes of
[e1] and [−e1] coincide in both H0(U) and H0(V ).
It follows that Ker i∗ = Im ∂ is a free abelian group generated by [e1]− [−e1].
Now to find a generator for H1(S

1) all we need to do is to find a cycle z such
that ∂[z] = [e1]− [−e1].
One possibility is indicated in the picture below. Using complex number no-
tation for the points of S1 we define α, β : I → S1 by

α(t) = eπti = cos(πt) + i sin(πt),

β(t) = e(π+πt)i = cos(π + πt) + i sin(π + πt).

Then x = α+β ∈ C1(S
1) is a cycle (∂(α) = e1− (−e1) and ∂β = (−e1)−e1)

and ∂([x]) = [∂1(α)] = [e1]− [−e1], since α ∈ C1(V ), β ∈ C1(U).
Hence [α + β] is a generator of H1(S

1). Now if we ”compose” pathes α and
β, we obtain a path γ = α · β, defined by

γ(t) = e2πti = cos(π(t)) + i sin(πt),
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which is just one round around S1 in the counter-clockwise direction. Exercise
2.11 implies that

[γ] = [α + β],

hence [γ] is also generator for H1(S
1) (which seems intuitively very expected).

b bb

b

b

e1−e1

e2

−e2

α

β

b e1

γ

Reader might have a suspicion that the calculation above would be easier
if one would use reduced groups instead of absolute groups. It is true - there
is also a reduced version of the Mayer-Vietoris sequence

. . . // H̃n+1(X)
∂ // H̃n(U ∩ V )

i∗ // H̃n(U)⊕ H̃n(V )
j∗ // H̃n(X)

∂ // H̃n−1(U ∩ V ) // . . .

which is naturally called the reduced Mayer-Vietoris exact sequence
of the proper triad (X ;U, V ). Of course one has to assume that U∩V = ∅,
so that all reduced groups are defined. The proof of existence of the reduced
Mayer-Vietoris exact sequence is left to the reader (exercise 3.27).

Example 3.5.3. As a more complicated example let us calculate the homol-
ogy of the projective plane RP n for all n ∈ N. The traditional way to define
projective plane is to say that RP n is a quotient space of Sn defined by the
equivalence relation ∼, which is generated by relations x ∼ −x for all x ∈ Sn.
There is also another model for RP n. Define an equivalence relation ∼′ on
the closed ball B

n
generated by the relations x ∼′ −x for all x ∈ Sn−1. No-

tice that the identifications happen only on the boundary and the open ball Bn

remain ”untouched”. In other words if q : B
n → B

n
/ ∼′= X is a quotient

mapping, then its restriction to Bn is a homeomorphism to its image, which
we will denote as U . U is clearly open in X. We also denote V = q(B

n\{0}),
V is open in X as well. Clearly U ∪V = X. Hence there is a reduced Mayer-
Vietoris exact sequence

. . . // H̃m+1(X) ∂ // H̃m(U ∩ V )
i∗ // H̃m(U)⊕ H̃m(V )

j∗ // H̃m(X) ∂ // . . .
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Define the mapping p : Sn → B
n
/ ∼′ by

p(x1, . . . , xn+1) = [(x1, . . . , xn)] if xn+1 ≥ 0,

p(x1, . . . , xn+1) = [(−x1, . . . ,−xn)] if xn+1 ≤ 0.

Then p is well-defined, continuous and induces a homeomorphism RP n =
Sn/ ∼→ B

n
/ ∼′= X. The proof of this claims is left to the reader as an

exercise 3.30. Hence we can identify RP n = X. Also notice that under this
identification p : Sn → RP n is exactly a projection quotient space.

It follows that the subspace p(Sn−1) ⊂ RP n is homeomorphic to RP n−1.
Thus we will consider RP n−1 as a subspace of RP n. Notice that the inclu-
sion RP n−1 → V is a homotopy equivalence - exactly for the same reason
that Sn−1 →֒ B

n \ {0} is a homotopy equivalence (exercise).

Hence we can substitute H̃m(V ) above with H̃m(RP n−1). Also U is con-
tractible (since it is essentially Bn), so its reduced groups are trivial. What
about U ∩ V ? Since U is homeomorphic to Bn, U ∩ V is homeomorphic to
the punctured open ball Bn \ {0} in a natural way. Clearly it has the same
homotopy type as its subspace

{x ∈ Bn | |x| = 1/2},

which is homeomorphic to Sn−1. Under these substitutions the inclusion
U ∩ V → V becomes a quotient projection p : Sn−1 → RP n−1. Hence we
obtain an exact sequence

. . . // H̃m+1(RPn)
∂ // H̃m(Sn−1)

p∗ // H̃m(RPn−1)
i∗ // H̃m(RPn)

∂ // H̃m−1(S
n−1) // . . . .

Since H̃n−1(S
n−1) is the only non-trivial reduced homology group of Sn−1 we

see that
1) i∗ : H̃m(RP n−1) → H̃m(RP n) induced by inclusion is an isomorphism for
m 6= n, n− 1.
2) There is an exact sequence

0 // H̃n(RPn−1)
i∗ // H̃n(RPn)

∂ // H̃n−1(S
n−1)

p∗ // H̃n−1(RPn−1)
i∗ // H̃n−1(RPn) // 0.

So, if we want to proceed by the induction, we need not only to know the
homology groups of RP n−1 but also a homomorphism

p∗ : H̃n−1(S
n−1) → H̃n−1(RP

n−1)

.
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Let us start with n = 1. The second model for RP 1 shows immediately
that RP 1 = [−1, 1]/{1,−1} is a closed interval with end points identified,
hence essentially S1. Moreover p : S1 → S1 = RP 1 looks like the mapping
that wraps the upper hemisphere of S1 around S1 one time, and the same for
the lower hemisphere.
Hence if we use α, β, γ from the previous example, we see that p♯(α) =
p♯(β) = γ, so

p∗([γ]) = p∗([α + β]) = [γ + γ] = 2[γ].

Hence p∗ looks like the homomorphism Z → Z, n 7→ 2n.

In particular H̃m(RP 1) = 0 for m > 1. Since H̃m(RP n) is isomorphic to

H̃m(RP n−1) for m > n, we see immediately by induction that H̃m(RP n) = 0
for m > n. This implies that the exact sequence above becomes the exact
sequence

0 // H̃n(RP n)
∂ // H̃n−1(S

n−1)
p∗ // H̃n−1(RP n−1)

i∗ // H̃n−1(RP n) // 0.

Hence H̃n(RP n) is a subgroup Ker p∗ of H̃n−1(S
1) ∼= Z, so in particular it is

either trivial, or isomorphic to Z. Hence p∗ : H̃n−1(S
n−1) → H̃n−1(RP n−1)

is always a homomorphism Z → Z, which is either zero or injective. In case
it is injective, we have that H̃n(RP n) = Ker p∗ = 0. In case it is a zero ho-

momorphism, H̃n(RP n) = Ker p∗ = H̃n−1(S
n−1) ∼= Z. Hence in particular if

H̃n(RP n) = 0, then in the next dimension we must have H̃n+1(RP n+1) ∼= Z
and also H̃n(RP n+1) = 0

Let us continue by induction and consider the next case n = 2. Since
we have seen that p∗ : H̃1(S

1) → H̃1(RP 1) is an injection, it follows that

H̃2(RP 2) = Ker p∗ = 0 and H̃1(RP 2) ∼= H̃1(RP 1)/ Im p∗ = Z/2Z = Z2.
From the considerations from the preceding paragraph it now follows that
H̃3(RP 3) ∼= Z, H̃2(RP 3) = 0 and H̃1(RP 3) = H̃1(RP 2) = Z2.

For the next case n = 4 we need to know p∗ : Z = H̃3(S
3) → H̃3(RP 3) = Z,

so that us investigate this matter in general.

To make use of the naturality of Mayer-Vietoris sequence it makes sense
to define proper triad (Sn;Z,W ) such that p : Sn → RP n is a mapping of
triads. Miming the definition of U and V and keeping in mind the definition
of p we define

Z = Z+ ∪ Z −= {x ∈ Sn | xn+1 > 0} ∪ {x ∈ Sn | xn+1 < 0},

W = Sn \ {en+1,−en+1}.
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Then (Sn;Z,W ) is a proper triad and p : (Sn;Z,W ) → (RPn, U, V ), so we
have a commutative diagram

H̃m+1(S
n) ∂ //

p∗
��

H̃m(Z ∩W )
i∗ //

p|∗
��

H̃m(Z)⊕ H̃m(W )
j∗ //

p|∗⊕p|∗
��

H̃m(S
n)p∗

∂ //

��

H̃m−1(Z ∩W )

p|∗
��

H̃m+1(RP n)
∂ // H̃m(U ∩ V )

i∗ // H̃m(U)⊕ H̃m(V )
j∗ // H̃m(RP n)

∂ // H̃m−1(U ∩ V )

with exact rows. Now let us simplify the upper row in the same way we have
already simplified the lower row. The subspace Z∩W has the same homotopy
type as its subspace S+ ∪ S−, where

S+ = {x ∈ Sn | xn+1 =
√
3/4},

S− = {x ∈ Sn | xn+1 = −
√
3/4},

via the inclusion S+ ∪ S− → Z ∩W . The reason we have chosen the weird
looking number

√
3/4 above is that then p maps S+∪S− onto {x ∈ Bn | |x| =

1/2} ⊂ RPn. Since both S+ and S− are homeomorphic to Sn−1 in an
obvious way, we can write the restriction of p to S+ ∪ S− as a mapping
Sn−1 ⊔ Sn−1 → Sn−1 (⊔ denotes the disjoint topological union) defined by
identity mapping id on the first copy of Sn−1 (corresponding to S+) and by
the antipodal mapping h : Sn−1 → Sn−1, h(x) = −x on the second summond

corresponding to Sn−1. In particular p|∗ : H̃m(Z ∩W ) → H̃m(U ∩ V ) in the

diagram above becomes then id⊕h∗ : H̃m(S
n−1)⊕ H̃(Sn−1) → H̃m(S

n−1).

The subspace Z is a disjoint union of two contractible spaces, so H̃m(Z) = 0
for m > 0. The subspace W has the same homotopy type as its subspace
Sn−1 = {x ∈ Sn | xn+1 = 0} and again we see that p : W → V becomes
p : Sn−1 → RP n−1 as well as i : Z ∩W → W becomes id⊔ id : Sn−1⊔Sn−1 →
Sn−1. Summarizing all these information we obtain the following commuta-
tive diagram (for n > 1)

0 // Hn(S
n) //

p∗

��

Hn−1(S
n−1)⊕Hn−1(S

n−1)
id⊕ id //

id⊕h∗

��

Hn−1(S
n−1)

j∗ //

p∗

��

Hn−1(S
n) //

p∗

��

0

0 // Hn(RPn)
∂ // Hn−1(S

n−1)
i∗ // Hn−1(RPn−1)

j∗ // Hn−1(RPn)
∂ // 0

with exact rows. Now the interesting case is the case when p∗ : Hn−1(S
n−1) →

Hn−1(RP n−1) is zero mapping (since in the other case it is injective and
Hn(RP n) = 0). In this case we have the commutative diagram

Hn(S
n)

∂∼= //

p∗

��

Ker(id⊕ id : Hn−1(S
n−1)⊕Hn−1(S

n−1) → Hn−1(S
n−1))

(id∗⊕h∗)|
��

Hn(RPn)
∂∼= // Hn−1(S

n−1).
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Now id⊕ id : Hn−1(S
n−1)⊕Hn−1(S

n−1) → Hn−1(S
n−1) looks like the map-

ping Z⊕ Z → Z, (n,m) 7→ n+m, so

Ker(id⊕ id) = {(x,−x) ∈ Hn−1(S
n−1)⊕Hn−1(S

n−1)) | x ∈ Hn−1(S
n−1)}.

According to the exercise 3.27 h∗(x) = (−1)nx) for all x ∈ Hn−1(S
n−1).

Hence

(id∗⊕h∗)(x,−x) = x+ (−1)n(−x) = x+ (−1)n+1(x) =

{
0, if n is even,

2x, if n is odd.

Hence the mapping p∗ : Hn(S
n) → Hn(RP n) has the same description i.e. as

a mapping Z → Z looks like the zero mapping if n is even and the mapping
n 7→ 2n if n is odd, at least with the suitable choice of the generators.
Let us prove by induction that in fact only the second case occurs (when
Hn(RP n) ∼= Z). To be precise we claim that
1) if n is even Hn(RP n) = 0 and Hn−1(RP n) ∼= Z2,
2) if n is odd Hn(RP n) ∼= Z, H̃n−1(RP n) = 0 and p∗ : Hn(S

n) → Hn(RP n)
is essentially a mapping n 7→ 2n.

For n = 1 we have already shown the claim to be true. Suppose n is odd
and the claim is true for n− 1, which is then even. Then Hn−1(RP n−1) = 0
and the considerations above apply, showing that the claim is true also for n.
If n is even and the claim is true for n−1, which is then odd, then p∗ : Hn(S

n−1) →
Hn(RP n−1)is the injection with image 2Z ⊂ Z, so the exact sequence above
shows that Hn(RP n) = 0 and Hn−1(RP n) ∼= Z/2Z = Z2.

Now we can finally gather all the information about the homology groups
of RP n.

Hm(RPn) =





Z, for m = 0,

Z2, for 0 < m < n if m is odd ,

Z, for m = n if n is odd ,

0, otherwise.

Before ending this section we notice that the equivalence of the simplicial
and singular homologies easily implies the following convenient result.

Proposition 3.5.4. Suppose K is a simplicial complex and L1 and L2 are
subcomplexes of K such that K = L1 ∪ L2. Then (|K|; |L1|, |L2|) is a proper
triad.

Proof. Exercise 3.31.
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3.6 Some classical applications

In this section we will apply the machinery of singular homology theory to
prove some important classical topological results, such as the Brouwer’s
fixed point theorem, invariance of domain and Jordan-Brouwer separation
theorem.

Theorem 3.6.1. The Brouwer’s fixed point theorem
Suppose C ⊂ V is a compact and convex non-empty subset of the finite-
dimensional vector space V . Then every continuous mapping f : C → C has
a fixed point.

Proof. Since C is homeomorphic to B
n
for some n ∈ N, it is enough to

consider the case C = B
n
. Let us make a counter-assumption - suppose

f : B
n → B

n
is a continuous mapping with a fixed point. Then f(x) 6= x for

all x ∈ B
n
. Consider a half-line Lx starting at f(x) and going through x (see

the picture).

b

b

f(x)

x

g(x)

For every x ∈ B
n
let g(x) be a unique point of Sn−1 that belongs to Lx.

This defines a mapping g : B
n → Sn−1, which is well-defined and continuous

(exercise 3.34). By definition it follows that g(x) = x for all x ∈ Sn−1. Hence
g is a retraction of B

n
onto Sn−1. However this is a contradiction with the

corollary 3.3.5, which says that no such retraction can exist.

There is a generalization of the Brouwer’s fixed point theorem, that says
that any mapping f : C → C, where C is a contractible compact polyhedra,
has a fixed point, but the proof is much more difficult and requires the de-
velopment of some further machinery.

To prove invariance of domain and separation theorem we need some
technical results first.
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Lemma 3.6.2. Suppose B ⊂ Sn is homeomorphic to B
k
for some 0 ≤ k ≤ n.

Then H̃m(S
n \B) = 0 for all m ∈ N.

Proof. The proof is by induction on k. If k = 0 B is a point and the claim
is clear, since then Sn \B is homeomorphic to Rn, hence contractible.
Suppose k > 0 and the claim is true for k − 1. Since Ik is homeomorphic to

B
k
, there is a homeomorphism f : Ik → B. Define C1 = f(Ik−1 × [0, 1/2]),

C2 = f(Ik−1× [1/2, 1]). Since C1 and C2 are both compact, {Sn\C1, S
n\C2}

is an open covering of (Sn \ C1) ∪ (Sn \ C2) = Sn \ (C1 ∩ C2) = Sn \ C,
where C = C1 ∩ C2 = f(Ik−1 × {1/2}) is homeomorphic to Ik−1. Also
(Sn \ C1) ∩ (Sn \ C2) = Sn \B. From the reduced Mayer-Vietoris sequence

H̃m+1(S
n \ C) = 0

∂ // H̃m(Sn \B)
(i∗,−i∗)// H̃m(Sn \ C1)⊕ H̃m(Sn \ C2)

j∗ // H̃n(S
n \ C) = 0

of the proper triad (Sn \ C;Sn \ C1, S
n \C2) and the induction assumption

we see that

(i∗,−i∗) : H̃m(S
n \B) → H̃m(S

n \ C1)⊕ H̃m(S
n \ C2)

is an isomorphism.
Fix m ∈ N. Let us make a counter-assumption, that there is x ∈ H̃m(S

n \B)

such that x 6= 0. Then either i∗(x) 6= 0 ∈ H̃m(S
n \ C1) or i∗(x) 6= 0 ∈

H̃m(S
n \ C2). Choose B1 = C1 in the first case and B1 = C2 in the second

case.
Since B1 satisfies the same assumptions asB (as well as the counter-assumption

H̃m(S
n\B1) 6= 0), we may repeat the same reasoning applied to B1, to obtain

B2. Continuing by induction we obtain a nested sequence

B = B0 ⊃ B1 ⊃ B2 ⊃ . . . ⊃ Bl ⊃ Bl+1 ⊃ . . .

such that il∗(x) 6= 0 for all inclusions il : (Sn \B) → (Sn \Bl) and
⋂∞

i=0Bi =
B∞ is homeomorphic to Ik−1, hence satisfies the inductive assumption. In
other words H̃m(S

n \B∞) = 0. Let i : (Sn \B) → (Sn \B∞) be the inclusion,
then i∗(x) = 0. Since singular homology theory has compact carriers (exercise
3.25a)), there is compact C ⊂ Sn \B such that x = j∗(y) for some y ∈ H̃(C),

where j : C → Sn \ B is an inclusion. It follows that j′∗(y) = 0 ∈ H̃m(S
n \

B∞) = 0 where j′ : C → Sn \ B∞ is an inclusion. By the compact carrier
property (exercise 3.25b)) there is compact D ⊂ Sn \ B∞ such that C ⊂ D
and j′′∗ (y) = 0 for inclusion j′′ : C → D.
Now

{Sn \Bl | l ∈ N}
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is an open covering of Sn \B∞, hence also of D. Since D is compact there is
q ∈ N such that

D ⊂
q⋃

i=0

Sn \Bl = Sn \Bq.

Since the diagram

H̃m(C)
j′′ //

j
��

H̃m(D)

k∗
��

H̃m(S
n \B)

iq∗ // H̃m(S
n \Bq)

is commutative (k : D → Sn \ Bq inclusion) we see that iq∗(x) = 0. This
however contradicts the construction of Bq. Hence counter-assumption was
false, so the claim is true also for k.

Lemma 3.6.3. Suppose B ⊂ Sn is homeomorphic to Sk for 0 ≤ k ≤ n− 1.
Then

H̃m(S
n \B) =

{
0, for m 6= n− k − 1,

Z, for m = n− k − 1.

Proof. By induction on k. If k = 0, then B = {a, b} is two points space and
Sn \B is homeomorphic to Rn \ {0}, so the claim follows.
Suppose claim is true for k−1 ≤ n−2. Let f : Sk → B be a homeomorpism.
Denote C1 = f(B+) and C2 = f(B−), where B+, B− are upper and lower
hemisphere in Sk as usual. Then {Sn \ C1, S

n \ C2} is an open covering of
Sn \ (C1 ∩ C2) = Sn \ C, where C is homeomorphic to Sk−1. Also

(Sn \ C1) ∩ (Sn \ C2) = Sn \B.

By the previous lemma both spaces Sn \C1 and Sn \C2 have trivial reduced
groups in all dimensions. The claim now follows from the Mayer-Vietoris
sequence

H̃m(Sn \ C1)⊕ H̃m(Sn \ C2) = 0 // H̃m+1(S
n \ C)

∂ // H̃m(Sn \B)
(i∗,−i∗)// H̃m(Sn \ C1)⊕ H̃m(Sn \ C2

and induction, since ∂ is isomorphism.

Theorem 3.6.4. (Jordan-Brouwer separation theorem).
Suppose B is a subset of Sn homeomorphic to Sn−1. Then Sn \B has exactly
two path components U and V and B = ∂U = ∂V .
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Proof. The case k = n−1 in the previous lemma shows that H̃0(S
n\B) = Z,

hence H0(S
n \ B) = Z ⊕ Z, so by Lemma 3.1.5 Sn \ B has exactly two

path components, U and V . Since Sn \ B is open in locally path-connected
space Sn, it follows that both U and V are open in Sn. This implies that
U ⊂ Sn \ V = U ∪B, so ∂U ⊂ B. By the same reasoning ∂V ⊂ B.
It remains to prove B ⊂ ∂U ∩ ∂V . It is enough to show that B ⊂ U ∩ V .
Suppose x ∈ B and let W be a neighbourhood of x ∈ Sn. Then B ∩ W
is a neighbourhood of x ∈ B. Since B is homeomorphic to Sn−1, there is a
neighbourhood A of x in B such that A ⊂ B∩W and B \A is homeomorphic

to B
n−1

.
By Lemma 3.6.2 the set Sn \ (B \A) = U ∪ V ∪A is path-connected. Hence
there exist a path p : I → Sn \ (B \ A) from p(0) ∈ U and p(1) ∈ V . Since
U ∪ V is not path-connected, path p must intersect A. In fact let

t0 = sup{t ∈ I | p(t) ∈ U}.

Then clearly p(t0) ∈ U and p(t0) /∈ U ∪ V , so p(t0) ∈ A ∩ U . Similarly
we see that A ∩ V 6= ∅. In particular W intersects both U and V , hence,
since W is open, W must intersect both U and V . Since W is an arbitrary
neighbourhood of x ∈ B, it follows that x ∈ U ∩ V . The theorem is proved.

If n ≥ 2 the Jordan-Brouwer theorem separation also holds in Rn (what
about the case n = 1?) i.e. if a subset S of Rn is homeomorphic to Sn−1,
then Rn\S has exactly two components and S is a boundary of both of them.
This easily follows from the proved version of the theorem for Sn, since Rn is
homeomorphic to Sn minus a point. Details are left to the reader (exercise
3.35).

Theorem 3.6.5. Invariance of Domain Suppose U, V are homeomorphic
subsets of Sn. If U is open in Sn, also V is.

Proof. Let h : U → V be a homeomorphism. It is enough to prove that for
every x ∈ U there is a neighbourhood Z ⊂ U of x such that h(Z) is open in
Sn. Let W be a small enough closed ball neighbourhood of x contained in
U and let A be its boundary. Then W and h(W ) are homeomorphic to B

n
,

while A and h(A) are homeomorphic to Sn−1. Now

Sn = Sn \ h(W ) ∪ h(A) ∪ h(W \ A)

and this union is disjoint. The set Sn \ h(W ) is path-connected by lemma
3.6.2. The set h(W \A) is also path connected, since W \A is path-connected
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(it is homeomorphic to Bn). On the other hand by the Jordan-Brouwer sepa-
ration theorem the set Sn\h(A) has exactly two path-connected components.
It follows that these components are exactly Sn \ h(W ) and h(W \ A). But
Sn is locally path-connected, so components of its open subset Sn \ h(A)
must be open. In particular h(W \A) is open. Hence Z = W \A is an open
neighbourhood of x, whose image is also open.

Inavriance of Domain is also true for subsets of Rn, just like Jordan-
Brouwer separation theorem. This time the proof of this fact is elementary
- Rn is (homeomorphic to the) open subset of Sn, so its subsets are open if
and only their open in Sn.

Define
Hn = {x ∈ Rn|xn ≥ 0}.

Recall that a non-empty topological space M is called a topological n-
manifold (with boundary) if
1) M is Hausdorff and
2) M is locally homeomorphic to Rn or Hn. Precisely these means that every
point x of M has a neighbourhood U which is homeomorphic to an open
subset of Rn or open subset of Hn.
This definition is a bit redundant since every open subset of Rn is clearly
homeomorphic to the open subset of Hn. Also one often includes the re-
quirement that M is second countable or paracompact in the definition of a
manifold, but we won’t need such technical requirements, so we omit them
for the sake of simplicity.

Suppose M is a manifold. Any homeomorphism f : U → f(U) ⊂ M ,
where U is an open subset of Rn or Hn and f(U) is open in M is called a
chart in M .
A point x ∈ M is called a boundary point if there is a chart f : U → f(U)
such that U is an open subset ofHn and x = f(y) for some y ∈ {z ∈ Hn | zn =
0}. The set of all boundary points of M is denoted by ∂M .
The point x ∈ M is called an interior point if there is a chart f : U → f(U)
such that U is an open subset of Rn. The set of all interior points is denoted
by intM .
If ∂M = ∅ (which means that all possible charts of M are defined on the
open subsets of Rn), we say that M is a manifold without boundary.

Using invariance of domain and other information available to us it is
easy to prove the following results concerning manifolds. The proofs are left
to the reader (Exercises 3.35 and 3.36).
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Lemma 3.6.6. Suppose M is an n-manifold. Then sets ∂M and intM are
disjoint. intM is open in M and itself is an n-manifold without boundary.
∂M is closed in M and is an (n − 1)-manifold without boundary. No n-
manifold is homeomorphic to m-manifold for m 6= n.

Lemma 3.6.7. Suppose M is an m-manifold, N is an n-manifold.
1) If m > n there are no continuous injections M → N .
2) If m = n and M has no boundary, then any continuous injection f : M →
N is an open embedding, i.e. a homeomorphism to the image f(M), which
is open in N (and is a subset of intM).

Corollary 3.6.8. Suppose M is a compact n-manifold without boundary and
N is a connected n-manifold. If f : M → N is a continuous injection, then
it it a surjective homeomorphism.

Proof. By the previous lemma f(M) is open in N . On the other hand f(M)
is compact, since M is compact, so f(M) is also closed in N . Since N is
connected f(M) = N .

Example 3.6.9. Examples of n-manifolds without boundary include Rn (and
all open subsets of Rn), sphere Sn, projective plane RP n, torus and Klein
bottle, which are 2-manifolds. Mobius band is a 2-manifold with boundary.
Closed disk B

n
is an n-manifold with boundary.

Example 3.6.10. The claim 2) of Lemma 3.6.7 is not true if M has bound-
ary. For example consider the mapping f : [0, 1[→ S1, f(t) = e2πti. Then
f is a continuous bijection between two 1-manifolds but it is not homeomor-
phism. Also if m < n there might be continuous injection from m-manifold
M to n-manifold N , which is not embedding, even if M has no boundary.
For example let f : ]0, 1[→ R2 be a mapping defined as in the picture below.

0

1

Then f is not embedding and the image f ]0, 1[ is not even a manifold

Corollary 3.6.8 shows that if M is compact n-manifold without boundary
and N is a connected n-manifold, which is not compact, then M cannot be
embedded in N . For example it follows that Sn cannot be embedded in Rn.
There is also more precise result known as the Borsuk-Ulam theorem,
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which says that for any mapping f : Sn → Rn there is x ∈ Sn such that
f(x) = f(−x), but the proof is too difficult for us at this point.

3.7 The degree of a mapping

Suppose f : Sn → Sn is a continuous mapping (n ≥ 1). Then the induced
mapping f∗ : Hn(S

n) → Hn(S
n) ”looks like” the homomorphism Z → Z.

Precisely put Hn(S
n) is a free group on one generator. There are precisely

two choices for this generator - if a is a generator, then −a is the only other
possibility.
Now there exists unique m ∈ Z such that f∗(a) = ma. Moreover n does not
depend on the choice of the generator, since then f∗(−a) = −f∗(a) = −ma =
m(−a). Also in this case for every x ∈ Hn(S

n) we have

f∗(x) = mx

and this property characterizes m uniquely.

Definition 3.7.1. Suppose f : Sn → Sn is a continuous mapping (n ≥ 1).
The unique m ∈ Z for which

f∗(x) = mx, x ∈ Hn(S
n)

is called the degree of the mapping f and denoted deg f .

Let us start by listing the basic properties of the degree

Proposition 3.7.2. 1) deg id = 1.
2) deg(g ◦ f) = deg g · deg f .
3) If f ≃ g are homotopic, then deg f = deg g.
4) If f is not surjective, then deg f = 0.
5) If f is a homotopy equivalence, then deg f = ±1.
6) Suppose h : Sn → Sn is antipodal mapping h(x) = −x. Then deg h =
(−1)n+1

Proof. Exercise 3.38 (except for property 6, which was earlier exercise 3.28).

Lemma 3.7.3. Suppose f, g ∈ Sn → Sn are such that f(x) 6= −g(x) for all
x ∈ Sn. Then f and g are homotopic. In particular deg f = deg g.
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Proof. Assumption implies that the interval

{(1− t)f(x) + tg(x) | t ∈ [0, 1]} ⊂ Rn

from f(x) to g(x) does not contain 0. Hence the mapping H : Sn × I → Sn

defined by

H(x, t) =
(1− t)f(x) + tg(x)

|(1− t)f(x) + tg(x)|
is well-defined and continuous homotopy from f to g.

Corollary 3.7.4. Suppose f : Sn → Sn, where n is even. Then there is a
point x ∈ Sn such that f(x) = x or f(x) = −x.

Proof. Let us assume that such a point does not exist. Then for the mappings
id and h(antipodal mapping, we have f(x) 6= (− id(x)) and f(x) 6= −h(x).
By the previous lemma deg f = deg id = 1 and at the same time deg f =
deg h = (−1)n+1 = −1, since n is even. This is a contradiction

A continuous mapping f : Sn → Rn+1 is called a tangent vector field
if 〈x, f(x)〉 = 0 for all x ∈ Sn, where 〈, 〉 is standard inner product on Rn+1.
Geometrically this could be interpreted as the assignment of a tangent vector
at every point of Sn, an ”arrow” that is parallel to the surface of Sn at
this point, in continuous fashion. This explains the name of the following
proposition.

Theorem 3.7.5. Hairy Ball’s theorem.
Suppose f : Sn → Rn+1 is a tangent vector field, where n is even. Then there
is a point x ∈ Sn such that f(x) = 0. In other words there is no non-zero
vector fields on Sn. Hence if you think of a vector field as ”hair” at each
point, then there is at least one ” bold ” spot.

Proof. Suppose f : Sn → Rn+1 is a non-zero vector field. Then f defines a
mapping g : Sn → Sn by g(x) = f(x)/|f(x)|. By the properties of the inner
product

〈x, g(x)〉 = 0

for all x ∈ Sn. By the previous corollary there is a point x ∈ Sn such that
g(x) = x or g(x) = −x. In both case we obtain

〈x, x〉 = 〈x,±g(x)〉 = ±〈x, g(x)〉 = 0.

By the properties of inner product this implies that x = 0. This is impossible,
since x ∈ Sn.
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Both corollary 3.7.4 and the Hairy Ball’s theorem are not true for odd n
(exercise 3.38).

We conclude this section by showing that for every m,n ∈ Z there is a
mapping f : Sn → Sn with deg f = m.

Proposition 3.7.6. Let fn : S
1 → S1 be defined by pn(z) = zn (treating

z ∈ S1 as a complex number), n ∈ Z. Then deg pn = n.

Proof. For n = 0 the mapping p0 is a constant mapping, which certainly has
degree 0. Also p−1(x, y) = (x,−y) is a reflection along the x-axis, which has
degree −1 by exercise 3.27. Since p−n = p−1 ◦pn, it is enough to consider the
case n > 0.
For every k = 0, . . . , n−1 let xi = e2πki/n and define the path αk : I → S1 by

αk(t) = e(1−t)2πki/n+t2π(k+1)i/n.

By the exercise 3.29 x = [
∑n−1

k=0 αk] is a generator of H1(S
1) and x = [γ],

where γ(t) = e2πit. Now (pn)♯(αk) = γ, hence

(pn)∗(x) =

n−1∑

k=0

[γ] = n[γ] = nx.

Let n > 1 and suppose f : Sn−1 → Sn−1 be a continuous mapping. We
define the suspension Σf : Sn → Sn of f as follows. Write

Sn = {(x, t) ∈ Rn−1 × R | |x|2 + |t|2 = 1}.

Assert

Σf(x, t) =

{
(|x| · f(x/|x|), t), if x 6= 0,

(x, t), if x = 0.

The geometric idea behind this formula is that for every c ∈ [−1, 1] the
” slice ” {x ∈ Sn|x = c} is homeomorphic to Sn−1 in a natural way, except
for extreme cases c = ±1, where this set reduces to a point (north and south
poles of Sn). Using this homeomorphism we define Σf to ”look like ” f
on every slice. North and south poles are fixed points. The verification of
continuity of Σf is left as en exercise (3. 39) to the reader.

Proposition 3.7.7. deg Σf = deg f .
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Proof. Recall that (Sn;B+, B−) is a proper triad (Exercise 3.33). Notice that
Σf(B+) ⊂ B+ and Σf(B−) ⊂ B−. Also Σf |Sn−1 = f . By the naturality
of the reduced Mayer-Vietoris sequence of the proper triad (Sn;B+, B−) we
obtain a commutative diagram

Hn(S
n)

∂∼= //

(Σf)∗
��

Hn−1(S
n−1)

f∗
��

Hn(S
n)

∂∼= // Hn−1(S
n−1),

where vertical mappings are isomorphisms. The claim follows.

As the last application we will prove the fundamental theorem of algebra.

Theorem 3.7.8. Every non-constant polynomial p : C → C has at least one
root.

Proof. Suppose p is a non-constant polynomial that does not have roots. We
may assume that p is of the form

p(z) = zn + an−1z
n−1 + . . .+ a1z + a0

for some a0, . . . , an−1 ∈ C. Since p does not have roots, the mapping fr : S
1 →

S1 defined by
fr(z) = p(rz)/|p(rz)|

is well defined and continuous for all r ≥ 0. Also the mapping f : S1×[0,∞[→
S1,

f(z, r) = fr(z) = p(rz)/|p(rz)|
is well-defined and continuous. For every r > 0 the restriction f |S1× [0, r] is
a homotopy between constant mapping f0 and fr. Hence deg fr = deg f0 = 0
for all r > 0.

On the other hand let r be any real number such that r > 1+ |a0|+ |aa|+
. . .+ |an−1|. Then for z with |z| = r we have

|zn| = rn = r × rn−1 > (|a0|+ |aa|+ . . .+ |an−1|)|zn−1|
≥ |an−1z

n−1|+ . . .+ |a1z| + |a0| ≥ |an−1z
n−1 + . . .+ a1z + a0|.

It follows that for 0 ≤ t ≤ 1 the polynomial pt(z) = zn + t(an−1z
n−1 + . . .+

a1z + a0) has no roots in the set {z | |z| = r} . In particular the homotopy
H : S1 × [0, 1] → S1 defined by

H(z, t) = pt(rz)/|pt(rz)|
is well-defined. Hence fr = H(·, 1) is homotopic to pn = H(·, 0), pn(z) = zn.
By the proposition 3.7.6 it follows that deg fr = deg pn = n.
Hence n = 0, so p must be constant polynomial.
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3.8 Exercises

3.8.1 Zeroth homology group, path components and
reduced homology

1. Suppose X is a topological space and let (Xa)a∈A be the set of all path-
components of X . Prove that the chain inclusions (iα)♯ : C(Xα) →
C(X) induce an isomorphism

(ia)a∈A : ⊕a∈A C(Xa) → C(X)

of chain complexes.

2. Suppose the chain complex C is a direct sum of complexes (Ca)a∈A.
Prove that the inclusion mappings ia : Ca → C induce a chain isomor-
phism

((a)∗)a∈A : ⊕a∈A Hn(Ca) → Hn(C)

for every n ∈ N.
Deduce the following: Suppose X is a topological space and let (Xa)a∈A
be the set of all path-components of X . Then the inclusions

ia : Xa → X

induce an isomorphism

((ia)∗)a∈A : ⊕a∈A Hn(Xa) → Hn(X)

for every n ∈ N.

3. Suppose f : X → Y is continuous and X, Y are both path-connected
and non-empty. Show that f∗ : H0(X) → H0(Y ) is an isomorphism.
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4. Suppose

. . . // 0 //

��

0 //

��

0 //

��

. . .

. . . // An−1
//

��

An
//

��

An+1
//

��

. . .

. . . // Bn−1
//

��

Bn
//

��

Bn+1
//

��

. . .

. . . // Cn−1
//

��

Cn
//

��

Cn+1
//

��

. . .

. . . // 0 // 0 // 0 // . . .

is a commutative diagram of abelian groups and homomorphisms. As-
sume that all columns are exact and the middle row is exact. Prove
thatthe upper row is exact if and only if lower row is exact. (Hint:
all horizontal sequences are chain complexes. Apply the long exact
homology sequence).

5. Suppose x ∈ X , where X is a topological space. Prove that

Hn(X, x) ∼= H̃n(X)

for all n ∈ N. (Hint: reduced homology sequence of a pair.)

6. Suppose C is a chain complex with an augmentation ε. Prove that the
sequence

. . . // Cn+1
∂n+1 // Cn

∂n // Cn−1
// . . . // C0

ε // Z // 0 // . . .

is a chain complex C ′, and Hn(C̃) = Hn(C
′) for all n ∈ Z. This give

another interpretation of reduced homology groups.

7. Calculate the reduced homology groups of two-points discrete space
S0 = {a, b} (only the 0th reduced homology is interesting) straight
from the definition, i.e. using the reduced singular chain complex. In
particular show that H̃0(S

0) ∼= Z and [a− b] is a generator of H̃0(S
0).
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3.8.2 Homotopy axiom

8. Consider a prism ∆n × I. Denote vi = (ei, 0) and v′i, i ∈ {0, . . . , n}.
Prove that the set {v0, . . . , vi, v′i, . . . , v′n}, i = 0, . . . , n is independent
for every i = 0, . . . , n. Show that the simplices obtained so form a
simplicial complex, which is a triangulation of the prism ∆n × I.

9. Suppose C is a convex subset of a finite-dimensional vector space and
x ∈ X . Construct an explicit homotopy equivalence f : (C, {x}) →
({x}, {x}).

10. Prove that Rn\{0} has the same homotopy type as Sn−1 or a punctured
ball B

n \ {0}.

11. Suppose f : (X,A) → (Y,B) is mapping of pairs. Suppose that f : X →
Y as well as f |A : A → B are homotopy equivalences. Prove that

f∗ : Hn(X,A) → Hn(Y,B)

is an isomorphism (Hint: Five Lemma).

12. Prove that the space X is contractible if and only if it has the same ho-
motopy type as a singleton space {x} and the pair (X, x) is contractible
if and only if it has the same homotopy type as the pair ({x}, {x}).
Show that every contractible space is path-connected.

13. Suppose K is a finite ∆-complex. For every geometric n-simplex σ of
K choose a point xσ ∈ int σ and let U = |Kn| \{xσ|σ ∈ Kn/ ∼}. Prove
that U is open in Kn and the inclusion |Kn−1| →֒ U is a homotopy
equivalence.
Deduce that the inclusion i : (|Kn|, |Kn−1|) → (|Kn|, U) induces isomo-
prhisms in relative homology in all dimensions.

14. Let
X =

⋃

n∈N+

{1/n} × I ∪ {0} × I ∪ I × {0}

and x0 = (0, 1). Prove that X is contractible, but the pair (X, x0) is
not contractible.
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15. Suppose C ′, C,D,D′ are chain complexes, f, g, h : C → D, k,m : D →
D′, l : C ′ → C are chain mappings.
a) Suppose H is chain homotopy from f to g, H ′ chain homotopy from
g to h. Prove thatH+H ′ is a chain homotopy from f to h. Deduce that
the relation ”f and g are chain homotopic” is an equivalence relation
in the set of all chain mappings C → D.
b) Prove that k ◦H is a chain homotopy from k ◦ f to k ◦ h and H : l
is a chain homotopy from f ◦ l to g ◦ l.
c) Suppose H ′′ is a chain homotopy from k to m. Then H ′′ ◦ f +m ◦H
and k ◦H +H ′′ ◦ g are chain homotopies from k ◦ f to m ◦ g.

3.8.3 Excision

16. a) Let B+ = {x ∈ Sn | xn+1 ≥ 0}. Prove that the mapping f : B+ →
B

n
,

f(x) = (x1, . . . , xn)

is a homeomorphism, which takes en+1 to 0.
b) Show that U = S \{en+1} is homeomorphic to Rn, via stereographic
projection through the north pole en+1. Stereographic projection of the
point y ∈ U is defined to be the unique point in Rn ⊂ Rn+1 which lies
on the line spanned by y and en+1. Construct the explicit formula for
this projection and its inverse.

17. a) Suppose U ⊂ Rn is open and x ∈ U . Prove that

j∗ : Hm(U, U \ {x}) ∼= Hm(R
n,Rn \ {x})

for all m ∈ N. Here j is an obvious inclusion of pairs.
b) Suppose U ⊂ Rn and V ⊂ Rm are both open and there is a homeo-
morphism f : U → V . Prove that n = m.

18. Suppose f : B
n → B

n
is a homeomorphism. Show that f maps interior

Bn onto itself and the boundary Sn−1 also onto itself. (Hint: remove a
point).

19. Let X be a non-empty set. Define Cn(X) to be the free abelian group
generated on the set Xn+1 for n ≥ 0 and Cn(X) = 0 for n < 0. Prove
that the definition

∂(x0, . . . , xn) =

n∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xn)
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defines a boundary operator that makes the collection C(X) = {Cn(X), ∂}
a chain complex. Prove that C(X) has an augmentation ε : C0(X) → Z
defined by ε(x) = 1 on generators.

For a fixed x ∈ X and every n ≥ 0 define homomorphism x : Cn(X) →
Cn+1(X) by

x(x0, . . . , xn) = (x, x0, . . . , xn).

Prove that

(∂n+1x+ x∂n)(y) =

{
y, if n 6= 0,

y − ε(y)b, if n = 0.

for all y ∈ C(X). Deduce that the complex C̃(X) is acyclic.

20. Suppose C,D are chain complexes and fn, gn : Cn → Dn homomor-
phisms defined for every n ∈ Z. Suppose for every n ∈ N there exists
a homomorphism Hn : Cn → Dn+1 with the property

∂n+1Hn +Hn−1∂n = fn − gn for all n ∈ Z.

Prove that f − g = {fn − gn | n ∈ Z} is a chain mapping.
Deduce that if g is a chain mapping, also f is. In other words mapping
that is homotopic to a chain mapping is a chain mapping itself.

21. Define a homotopy Hn : Cn(X) → Cn+1X by

Hn(σ) = σ♯(Hn(∆n)),

where Hn(∆n) is the image of id : ∆n → ∆n under Hn : LCn(∆n) →
LCn+1(∆n) ⊂ Cn(∆n). Prove (using the corresponding property of
Hn : LCn(∆n) → LCn+1(∆n)) that H is a chain homotopy between id
and barycentric subdivision operator S : C(X) → C(X) .

22. a) Suppose D is a convex subset in a finite-dimensional vector space V .
Prove that the barycenteric subdivision operator S : LC(D) → LC(D)
is a chain mapping straight from the definition, i.e. show that ∂S = S∂,
without the use of any homotopy.
b) Do the same for S : C(X) → C(X) for any topological space X .
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23. Let
B+ = {x ∈ Sn | xn+1 ≥ 0} and

B− = {x ∈ Sn | xn+1 ≤ 0} and .

Use homology and excision axioms to show that the inclusions i : (B+, S
n−1) →

(Sn, B−) and j : (B−, S
n−1) → (Sn, B+) induce isomorphism in relative

homology (for all dimensions).

3.8.4 The equivalence of the simplicial and singu-
lar homologies

24. Consider the contractible homotopy α : ∆n × I → ∆n defined by

α(x, t) = (1− t)x+ te0.

Let Λ0
n =

⋃
i>0 ∂

i
n∆n. Prove that α(Λ0

n × I) ⊂ Λ0
n.

25. Prove that the singular homology has compact carriers in the fol-
lowing precise sense.
a) Suppose x ∈ Hn(X) (X a top. space). Prove that there exists
compact C ⊂ X such that x belongs to the image of

i∗ : Hn(C) → Hn(X)

(where i : C → X inclusion).
b) Suppose C ⊂ X is compact, i : C → X an inclusion and x ∈ Hn(C)
is such that i∗(x) = 0 ∈ Hn(X). Prove that there exists a compact
D ⊂ X such that C ⊂ D and j∗(x) = 0 ∈ Hn(D), where j : C → D is
inclusion.
Also prove a) and b) for reduced homology groups H̃n.

26. Suppose K is a ∆-complex.
a) Let C be a compact subset of |K|. Show that there is a finite sub-
complex L of K such that C ⊂ L.
b) Assume the theorem 3.4.3 is true for all finite subcomplexes of K.
Prove that i∗ : Hn(K) → Hn(|K|) is an isomorphism for all n ∈ N.
(Hint: a) and a previous exercise).
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27. a) Prove that the Mobius band X has the same homotopy type as S1.
(Hint: show that inclusion J → X , where J as in the picture is a ho-
motopy equivalence.)

J
aa

b

c
b) Calculate the simplicial homology of the ”boundary” in the picture
above generated by the 1-simplices a, b, c.

c) Deduce that Mobius band and S1 are not homeomorphic (remove a
point and use b)).

28. a) Let n > 0, i ∈ {1, . . . , n + 1} and let ιi : S
n → Sn be defined by

ιi(x) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn + 1). Prove that

(ιi)∗(x) = −x

for all x ∈ Hn(S
n), i = 1, . . . , n, assuming we already know it is true

for i = n + 1. (Hint: use the fact that ιi = f ◦ ιn+1 ◦ f for some
homeomorphism f .)
b) Let h : Sn → Sn, h(x) = −x. Prove that

h∗(x) = (−1)n+1x.

for all x ∈ Hn(S
n).

3.8.5 Mayer-Vietoris sequence

29. Suppose (X ;U, V ) is a proper triad such that U ∩V 6= ∅. Consider the
diagram

0 // C(U ∩ V )
i //

ε

��

C(U)⊕ C(V )
j //

ε⊕ε

��

C(U) + C(V ) //

ε

��

0

0 // Z i // Z⊕ Z
j // Z // 0,
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where Z is considered as a chain complex (with only non-trivial group
in dimension 0) and i and j are defined as usual. Show that the diagram
is commutative and rows are exact. Conclude that the sequence

0 // C̃(U ∩ V ) i // C̃(U)⊕ C̃(V )
j // ˜C(U) + C(V ) // 0

is short exact.

Prove that the inclusion i : ˜C(U) + C(V ) → C̃(X) induces isomor-
phisms in reduced homology (Hint: suitable diagram and the Five
Lemma).
Conclude the existence of the reduced Mayer-Vietoris sequence

. . . // H̃n+1(X)
∂ // H̃n(U ∩ V )

i∗ // H̃n(U)⊕ H̃n(V )
j∗ // H̃n(X)

∂ // H̃n−1(U ∩ V ) // . . .

30. Suppose D = {0 = t0 < t1 < . . . < tn = 1} be a finite subdivision of
I = [0, 1]. Define for every i = 0, . . . , n− 1 a path αi : I → S1 by

αi(t) = cos(2πti(1− t) + t2πti+1) + i sin(2πti(1− t) + t2πti+1).

In other words αi is an arc that connects xi = e2πti and xi+1 = e2πti+1 .
Define γD ∈ C1(S

1) as

γD =
n−1∑

i=0

αi.

Show that γD is a cycle. By induction on n prove that γD = γ, where
γ = γD0

, D={0, 1}. (Hint: exercise 2.11).

31. Define the equivalence relation ∼ on Sn to be the smallest equivalence
relation with x ∼ −x for all x ∈ Sn and the equivalence relation ∼′ on
B

n
with x ∼′ −x for all x ∈ Sn−1 Define the mapping p : Sn → B

n
/ ∼′

by

p(x1, . . . , xn+1) = [(x1, . . . , xn)] if xn+1 ≥ 0,

p(x1, . . . , xn+1) = [(−x1, . . . ,−xn)] if xn+1 ≤ 0.

Prove that p is well-defined, continuous and induces homeomorphism
Sn/ ∼→ B

n
/ ∼′.
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32. Suppose K is a simplicial complex and L1 and L2 are subcomplexes of
K such that K = L1 ∪L2. Show that (|K|; |L1|, |L2|) is a proper triad.
(Hint: use the equivalence of simplicial and singular homologies).

33. Use the previous exercise to show that (Sn;B+, B−) is a proper triad.
Write down the reduced Mayer-Vietoris sequence of this triad and use
it to prove that H̃n(S

n) ∼= H̃n−1(S
n−1).

3.8.6 Some classical applications

34. Construct the explicit formula for the mapping g defined in the proof
of the Brouwer’s fixed point theorem (theorem 3.6.1) and show that g
is continuous retract B

n → Sn−1.

35. a) Suppose V is an open subset of Rn, n ≥ 2 and x ∈ V . Using excision
property show that H1(V, V \{x}) ∼= H1(Rn,Rn \{x}) and deduce that
H1(V, V \ {x}) = 0.
Using this, prove that V \{x} is path-connected, if V is path-connected.
b) Suppose n ≥ 2 and S ⊂ Rn is homeomorphic to Sn−1.
Prove that Rn\S has exactly two path components and S is a boundary
of both of them, using the corresponging statement for the subsets of
Sn.
What happens if n = 1?

36. Suppose M is an n-manifold. Prove that
1) The sets ∂M and intM are disjoint.
2)intM is open in M and itself is an n-manifold without boundary.
3)∂M is closed in M and is an n− 1-manifold without boundary.
4) No n-manifold is homeomorphic to m-manifold for m 6= n.

37. Suppose M is an m-manifold, N is an n-manifold. Prove that
1) If m > n there are no continuous injections M → N .
2) If m = n and M has no boundary, then any continuous injection
f : M → N is an open embedding, i.e. a homeomorphism to the image
f(M), which is open in N (and is a subset of intM).
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3.8.7 The degree of a mapping

38. Prove the following claims for the mappings Sn → Sn.
1) deg id = 1.
2) deg(g ◦ f) = deg g · deg f .
3) If f ≃ g are homotopic, then deg f = deg g.
4) If f is not surjective, then deg f = 0.
5) If f is a homotopy equivalence, then deg f = ±1.

39. Define f : S2n−1 → S2n−1n by

f(x1, x2, . . . , x2n−1, x2n) = (x2,−x1, . . . , x2n,−x2n−1).

Show that f defines a non-zero vector field.

40. Let n > 1 and suppose f : Sn−1 → Sn−1 is a continuous mapping. Write
Sn = {(x, t) ∈ Rn−1 × R | |x|2 + |t|2 = 1} and define Σf : Sn → Sn by
the formula

Σf(x, t) =

{
(|x| · f(x/|x|), t), if x 6= 0,

(x, t), if x = 0.

Prove that Σf is continuous.

41. Suppose f : Sn → Sn is even, i.e. f(x) = f(−x). Prove that deg f is
even integer and if n ie even then deg f = 0.
Give for every m ∈ Z an example of an even mapping f : S1 → S1 with
deg f = 2m.

42. a) For every x ∈ B
n
, x 6= 0 let

α(x) = 2

√
1− |x|
|x| .

Define h : B
n → Sn by

h(x) =

{
(αx1, αx2, . . . , αxn, 1− 2|x|), if x 6= 0

en+1 = (0, . . . , 1) if x = 0.
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Prove that h is a well-defined continuous surjective mapping which
restriction to Bn is a homeomorphism to Sn \ {−en+1} and which
maps Sn−1 onto −en+1. Deduce that h induces a homeomorphism
B

n
/Sn−1 ∼= Sn.

b) Define f : Sn → Sn so that f |B+ = h◦g, where g is a standard home-
omorphism B+ → B

n
, g(x1, . . . , xn, xn+1) = (x1, . . . , xn) and f |B− is a

constant mapping that maps everything to the south pole −en+1.
Prove that f is a well-defined continuous mapping and f(x) 6= −x for
all x ∈ Sn. Deduce that deg f = 1.
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