STOCHASTIC POPULATION MODELS

EXERCISES 9

9.

Consider the following variation on the individual-level model from section 1.9, where X denotes an adult individual inhabiting a territory, Y a juvenile juvenile individual, Z an adult individual searching for a free territory, and T a free territory. Suppose the individual-level dynamics are give by the reaction network

Here $Y \stackrel{\varphi}{\Longrightarrow} Z$ is to be interpreted as in section 3.1 of the lecture notes, i.e., as a developmental delay where φ is the probability density of the length of the juvenile period given that the juvenile survives till maturation.

- (a) Give the corresponding population equations as a closed system of two differential equations: one for the population density X of individuals occupying a territory, and one for the population density Z of individuals searching for a territory.
- (b) Assume that reproduction by adults inside a territory as well as adult death outside a territory are both fast processes. Reduce the system to a single DDE for X only. Take $\varphi(t) = \delta_{\text{Dirac}}(t-\tau)$ for given $\tau > 0$. What does this mean in terms of the processes on the individual level? Compare the result with the delayed logistic in equation (5) of section 3.1 of the lecture notes.
- (c) Perform a linear stability analysis for the trivial equilibrium X = 0. You can use the figures derived in section 3.1 of the lecture notes, but beware that not all values of $a\tau$ and $b\tau$ can be realised in the present model.
- (d) When does the DDE in (b) have a positive equilibrium $\overline{X} > 0$. Perform a linear stability analysis for \overline{X} when it exists. You can use the figures derived in section 3.1 of the lecture notes, but beware that not all values of $a\tau$ and $b\tau$ can be realised in the present model.

2 EXERCISES 9

(e) Calculate the transfer function for fluctuations in the juvenile death rate when the population density X is close to a positive equilibrium \overline{X} .