STOCHASTIC POPULATION MODELS

EXERCISES 5-8

5.

Consider the epidemiological model of the last exercise based on the processes

Give the transfer function $T(\omega)$ for a seasonally varying infection rate α . Calculate the maximum gain $G_{\rm m}$ and the cutoff frequency $\omega_{\rm c}$. How does the cutoff frequency depend on the average infection rate? Express the cutoff frequency in units of cycles per mean recovery time (β^{-1}) . What does this tell you about absence (or presence) of seasonality of the prevalence of the disease in relation to the average length of an infection?

6.

Consider the resource-consumer model

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t}R &= R_0 - \alpha R - \beta RC & \text{(resource)} \\ \frac{\mathrm{d}}{\mathrm{d}t}C &= \gamma \beta RC - \alpha C - \delta C^2 & \text{(consumer)} \end{cases}$$

Can you interpret the different terms and parameters? Calculate the equilibria and determine their stability. For the positive equilibrium, give the transfer functions $T_{\rm R}(\omega)$ and $T_{\rm C}(\omega)$ for, respectively, the resource and the consumer if the R_0 is seasonally varying. Under what conditions is there a resonance peak?

7.

Let \tilde{f} and \tilde{h} denote the Fourier transforms of, respectively, f and h, and show that:

- (a) the Fourier transform and its inverse are linear operators,
- (b) $\tilde{\tilde{f}}(t) = 2\pi f(-t),$
- (c) $\widetilde{\left(\frac{d}{dt}f\right)}(\omega) = i\omega \widetilde{f}(\omega),$
- (d) $\frac{d}{d\omega}\tilde{f}(\omega) = -i(\widetilde{tf})(\omega),$
- (e) $\tilde{f}_{\tau}(\omega) = e^{-i\omega\tau}\tilde{f}(\omega)$ where $f_{\tau}(t) := f(t-\tau)$,
- (f) $\widetilde{(f*h)}(\omega) = \widetilde{f}(\omega)\widetilde{h}(\omega)$ where $(f*h)(t) := \int_{-\infty}^{+\infty} f(\tau)h(t-\tau)d\tau$,
- (g) $(\widetilde{fh})(\omega) = \frac{1}{2\pi} (\widetilde{f} * \widetilde{h})(-\omega),$
- (h) $\int_{-\infty}^{+\infty} f(t)\tilde{h}(t)dt = \int_{-\infty}^{+\infty} \tilde{f}(t)h(t)dt$.

8

Let δ denote the Dirac-delta distribution, and show that:

- (a) $\widetilde{(t^n)}(\omega) = 2\pi n! \, \delta(\omega)/(i\omega)^n$ for $n = 0, 1, \dots$
- (b) $\widetilde{e^{i\omega_0 t}}(\omega) = 2\pi \delta(\omega \omega_0)$
- (c) $\widetilde{\cos(\omega_0 t)}(\omega) = \pi \delta(\omega \omega_0) + \pi \delta(\omega + \omega_0)$