STOCHASTIC POPULATION MODELS

EXERCISES 13-14

13.

Consider the stochastic process $\{X(t)\}_{t\geq 0}$ generated by the linear stochastic differential equation

$$dX = (a - bX)dt + 2\sqrt{c} dW \quad \text{(Ito)}$$

with a, b, c > 0 and initial condition $X(0) = x_0$ (a.s.).

- (a) Give an ODE for the mean $\overline{X}(t) := \mathcal{E}\{X(t)\}$ and solve it. Under what conditions on a, b, c does $\overline{X}(t)$ converge as $t \to \infty$? What is this limit?
- (b) Use Ito's multiplication table to get a SDE for X^n in terms of X^n itself and X^{n-1} . Next, get an ODE for the *n*-th moment $\mu_n(t) := \mathcal{E}\{X(t)^n\}$ in terms of μ_n itself and μ_{n-1} . Solve the equations recursively starting with n = 1, and check under what conditions on a, b, c and n the solution converges as $t \to \infty$.
- (c) Integrate the SDE to get find the distribution of X(t) for $t \geq 0$. Under what conditions on a, b, c does the SDE permit a stationary distribution? What does this distribution look like? Calculate the spectral density and auto-covariance for the stationary process.
- (e) Give the Fokker-Plack equation corresponding to the SDE, and check that the probability distribution found in (b) satisfies the equation. Also, calculate the stationary distribution directly from the Fokker-Planck equation.

14.

Consider the stochastic process $\{X(t)\}_{t\geq 0}$ generated by the non-linear stochastic differential equation

$$dX = (a - bX)dt + 2\sqrt{c}X dW$$
 (Ito)

with a, b, c > 0 and initial condition $X(0) = x_0$ (a.s.).

- (a) Give an ODE for the mean $\overline{X}(t) := \mathcal{E}\{X(t)\}\$ and solve it. Under what conditions on a, b, c does $\overline{X}(t)$ converge as $t \to \infty$? What is this limit?
- (b) Use Ito's multiplication table to get a SDE for X^n in terms of X^n itself and X^{n-1} . Next, get an ODE for the *n*-th moment $\mu_n(t) := \mathcal{E}\{X(t)^n\}$ in terms of μ_n

itself and μ_{n-1} . Solve the equations recursively starting with n=1, and check under what conditions on a,b,c and n the solution converges as $t\to\infty$.

(c) Give the Fokker-Plack equation corresponding to the SDE, and find a stationary probability distribution directly from the Fokker-Planck equation.