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8. Introduction to birth-death processes

8.1. The Basic model. Small populations cannot reasonably be modeled with a differ-
ential equation because of at least two reasons: firstly, the population size counted as the
number of individuals present (rather than as population density) changes in discrete
steps, and secondly, because of demographic stochasticity, i.e., chance fluctuations in the
number of births and deaths within a given interval of time. While in a very large pop-
ulation (not necessarily large in population density, but large in number of individuals)
such fluctuations are averaged out by the statistical Law of the Large Numbers, but this
does not happen when the population is small, and hence a different modeling approach
is needed.

Let N(t) denote the number of individuals at time t ≥ 0. Then {N(t)}t≥0 is a stochastic
process on the non-negative integers. Let further

(1) Pn(t) := Prob
{
N(t) = n

}
Suppose that given a population size n, birth and death are independent Poisson pro-
cesses with respective rates Bn and Dn and with Bn = Dn = 0 for n ≤ 0. The probability
of having i births and j deaths in a time interval of length ∆t in a population of size n
then is

(2)
(Bn∆t)ie−Bn∆t

i!
· (Dn∆t)je−Dn∆t

j!

i.e., the product of two Poisson distributions. (One might wonder how the population
size can stay xed if births and deaths are going on. The solution to this paradox is to
imagine that there is an experimenter who removes every newborn and replaces every
dead individual. In this way the population size stays constant in spite of births and
deaths.)
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From equation (2) we find that for small ∆t

(3)



Prob{one birth & no deaths} = Bn∆t+ O(∆t)2

Prob{no births & one death} = Dn∆t+ O(∆t)2

Prob{no births & no deaths} = 1−Bn∆t−Dn∆t+ O(∆t)2

Prob{anything else} = O(∆t)2

From this it follows that

(4)
Pn(t+ ∆t) =(

Bn−1∆t
)
Pn−1(t) +

(
Dn+1∆t

)
Pn+1(t) +

(
1−Bn∆t−Dn∆t

)
Pn(t) + O(∆t)2

Subtracting Pn(t) from both sides and dividing by ∆t, we have

(5)
Pn(t+ ∆t)− Pn(t)

∆t
= Bn−1Pn−1(t) +Dn+1Pn+1(t)− (Bn +Dn)Pn(t) + O(∆t)

which, as we let ∆t→ 0, becomes the ordinary differential equation

(6)
dPn
dt

= Bn−1Pn−1 +Dn+1Pn+1 − (Bn +Dn)Pn

where Bn = Dn = 0 for n ≤ 0. One readily checks that

(7)
∞∑
n=0

dPn
dt

= 0 ∀t ≥ 0

so that the sum of all Pn stays constant. What this constant is depends on the initial
condition. But since we are dealing with a probability distribution over the non-negative
integers, we choose

(8)
∞∑
n=0

Pn = 1 ∀t ≥ 0

The above birth-death process is called a single-type nonlinear birth-death process: single-
type because there is only one type of individuals (we do not distinguish between, e.g.,
juveniles and adults), and nonlinear because the Bn and the Dn may depend on n in
a nonlinear way. The latter is somewhat confusing, because equation (6) is, technically
speaking, a system of linear differential equations (i.e., linear in the Pn ) with constant
(i.e., time-independent) coefficients Bn and Dn.



STOCHASTIC POPULATION MODELS (SPRING 2011) 3

8.2. Stationary distribution. To find an equilibrium (or stationary distribution) of
the model (if any), we set d

dtPn = 0 for all n. Then, with Dn > 0 for n ≥ 1,

(9)

d
dtP0 = D1P1 =⇒ P1 = 0

=⇒ d
dtP1 = D2P2 =⇒ P2 = 0

=⇒ d
dtP2 = D3P3 =⇒ P3 = 0

=⇒ etc.

So, at equilibrium, Pn = 0 for all n ≥ 1, and since the Pn must sum up to one, it follows
that P0 = 1. In other words, there is only one equilibrium, and that is the degenerate
distribution where all probability mass is concentrated at zero, corresponding to the
extinct population.

8.3. The linear birth-death process. In the linear birth-death process the birth and
death rates are linear in n, i.e.,

(10) Bn = βn & Dn = δn

where β, δ > 0 are the per capita birth and death rates. Let µi denote the ith moment
of the population size distribution, i.e.,

(11) µi(t) =
∞∑
n=0

niPn(t)

For the first moment it follows from equation (6) that

(12)
dµ1(t)

dt
= (β − δ)µ1(t)

and so

(13) µ1(t) = µ1(0)et(β−δ)

Likewise, for the second moment we get

(14)
dµ2(t)

dt
= 2(β − δ)µ2(t) + (β + δ)µ1(t)

and so

(15) µ2(t) = µ2(0)e2t(β−δ) + µ1(0)et(β−δ)
(
et(β−δ) − 1

) β + δ

β − δ
For the population variance σ2(t) = µ2(t)− µ1(t)2 we thus have

(16) σ2(t) = σ2(0)e2t(β−δ) + µ1(0)et(β−δ)
(
et(β−δ) − 1

) β + δ

β − δ
whenever β 6= δ. The case β = δ is left as an exercise.

Suppose that β < δ. Then µ1(t) → 0 and σ2(t) → 0 as t → ∞. This is consistent
with our finding in the previous section that there does not exist a positive equilibrium
distribution, and we expect the population do die out. Next, suppose that β > δ. Then
µ1(t) → ∞ and σ2(t) → ∞ as t → ∞. On first sight, this may seem to contradict
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our finding in the previous section, however, as we shall see in the next section, what
happens is that with a given non-zero probability the population escapes to infinity, i.e.,
grows without bounds.

8.4. Extinction probability for the linear birth-death process. In the linear
birth-death process, the birth rate and death rate are linear in n, i.e.,

(17) Bn = βn & Dn = δn

for given β, δ > 0. Let En := limt→∞ P0(t) denote the probability of eventual extinction
for a population of initial size n ≥ 0. Then

(18)


E0 = 1

En = β
β+δEn+1 + δ

β+δEn−1 (n ≥ 1)

where β/(β + δ) and δ/(β + δ) are, respectively, the probability that the first event is a
birth event or death event. Define ∆En := En − En−1. Then we have

(19) ∆En+1 =
δ

β
∆En

and so

(20) ∆En = ∆E1

(
δ

β

)n−1

and

(21)

En = E0 +
∑n

i=1 ∆Ei

= 1− (1− E1)
∑n

i=1

(
δ
β

)n−1

The sub-critical case:

If 0 < β ≤ δ, then the series
∑n

i=1

(
δ
β

)n−1
diverges as n→∞, and

(22) E1 6= 1 & lim
n→∞

En = ±∞
or

(23) E1 = 1 & lim
n→∞

En = 1

Since the En are probabilities, only the second option is possible, and so E1 = 1. But
that implies via equation (21) that En = 1 for all n. In other words, if the birth rate does
not exceed the death rate, then eventual extinction is certain for all initial population
sizes.

The super-critical case:

If 0 < δ < β, then the series
∑n

i=1

(
δ
β

)n−1
converges as n→∞, and

(24) lim
n→∞

En = 1− 1− E1

1− δ/β
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The only reasonable assumption is that limn→∞En = 0, which implies that E1 = δ
β and

hence, via equation (21),

(25) En =

(
δ

β

)n
∀n ≥ 0

In other words, extinction is possible also if the birth rate exceeds the death rate, but
extinction is not certain and the probability of extinction decreases with the initial size
of the population.

8.5. Example. Consider the SIR model, which involves the following individual-level
processes:

(26)
S + I

β−→ I + I (transmission)

I
α−→ R (recovery or removal)

where “S” denotes an uninfected but susceptible individual, “I” an infected individual,
and “R” an individual that has recovered from the infection and has become immune.
Assuming mass-action (see Section 1.5), the corresponding differential equations for the
population densities are

(27)


d
dtS = −βSI (susceptible)

d
dtI = +βSI − αI (infected)

The recovered individuals (R) do not have an active role, and so their differential equation
is left out. The dynamics of the model is given by the following figure.

Figure 1. Phase-plane analysis of the SIR model.

What happens if we introduce the infection in an initially infection-free population? It
all depends on the population density S0 of the infection-free state. All points on the
horizontal axis in the above figure are equilibria, but only points left of α/β are stable,
while points right of α/β are unstable. In other words, the infection can spread (i.e.,
becomes an epidemic) if S0 > α/β. Moreover, it can be seen from the figure that the
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size of the epidemic (i.e., the proportion of individuals that eventually have got the
infection) increases with S0. If S0 ≤ α/β, however, the infection cannot spread and dies
out without doing much harm.

This is what the deterministic SIR model tells us. But the picture is incomplete. In
particular, the model does not capture the possibility that even if S0 > α/β, the infection
may nevertheless die out due to random demographic fluctuations during the initial phase
when there are still only a few infected individuals around. To calculate the probability
of an epidemic, we model the initial phase of a potential epidemic as a stochastic birth-
death process.

To this end, let i ∈ {0, 1, 2, . . . } denote the number of infected individuals. While i is
small compared to the total size of the population, changes in i will have a negligible
effect on the population density S0 of uninfected individuals, which therefore will be
assumed constant. The rate at which new individuals enter the I-state (i.e., the birth”
rate of infected individuals) then is βS0i, and the rate at which individuals leave the
I-state (i.e., the “death” rate of infected individuals) is αi. For the initial phase of
a potential epidemic we thus have a linear birth-death process with birth and death
rates

(28) Bi = βS0i & Di = αi

The probability of an epidemic given the initial number of i0 infected individuals is equal
to one minus the probability of extinction. The probability of extinction was calculated
in the previous section for the sub-critical case and for the super-critical case. From this
we find

(29) Prob{epidemic} =


0 if S0 ≤ α

β

1− ( α
βS0

)i0 if S0 >
α
β

We can express these probabilities also in terms of the basic reproductive number (R0),
which is defined as the expected number of secondary cases (of the infection) produced
by each primary case. The R0 plays an important role in epidemiology and has been
measured for many diseases. We can calculate the R0 for the SIR model as follows: the
expected time an individual is ill is α−1; while ill, the rate of infecting others is βS0; the
expected number of secondary cases infected by our focal individual therefore is βS0/α.
In terms of the R0 we thus have

(30) Prob{epidemic} =


0 if R0 ≤ 1

1−R−i00 if R0 > 1

For example, Wikipedia gives for measles an estimate 12 ≤ R0 ≤ 18 (depending on
population density, social contact rates etc.). This corresponds to a probability of 92–
94% that a single infected individual causes an epidemic of measles. For SARS and for
HIV/AIDS, Wikipedia gives an estimate 2 ≤ R0 ≤ 5, corresponding to a probability of
50–80% of an outbreak caused by just a single primary case.
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8.6. Conditional probability distribution for the nonlinear birth-death pro-
cess. Consider the conditional probability distribution given that the population is not
extinct:

(31) P cn(t) :=
Pn(t)

1− P0(t)

Differentiation with respect to time and using system (6) gives

(32)
dP cn
dt

= Bn−1P
c
n−1 +Dn+1P

c
n+1 − (Bn +Dn)P cn +D1P

c
1P

c
n (n ≥ 1)

This is a non-linear system in the P cn, and there is no a priori reason why this equation
should not have a (non-degenerate) equilibrium even if equation (6) has not.

To characterize the equilibrium, first write

(33) Pc :=



P c1

P c2

P c3

...


and

(34) A :=



−B1 −D1 D2 0 . . .

B1 −B2 −D2 D3 . . .

0 B2 −B3 −D3 . . .

0 0 B3 . . .

. . . . . . . . . . . .


and so system (32) becomes

(35)
d

dt
Pc =

(
A +D1P

c
1 I
)
Pc

where I is the identity matrix. The equilibrium equation then is

(36) 0 =
(
A +D1P

c
1 I
)
Pc

i.e, the equilibrium (or quasi-stationary distribution) is a normalized eigenvector of the
matrix A with corresponding eigenvalue D1P

c
1 .

If Prob{N(t) ≤ N0} = 1 for all t and given N0, then A can be truncated by delet-
ing all rows and columns corresponding to population sizes n > N0 (which cannot be
reached anyway) and so becomes finite-dimensional. If this truncated matrix A is more-
over irreducible, then the theorem of Perron-Frobenius (see Appendix) tells us that the
quasi-stationary distribution Pc is the positive eigenvector corresponding to the sin-
gle eigenvalue with the greatest real part (the so-called dominant eigenvalue of A).
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Moreover, the quasi-stationary distribution is stable. For the case where A cannot be
truncated, similar results hold (search for ”Yaglom limits” in, e.g., Wikipedia).

8.7. Extinction in the nonlinear birth-death process. Suppose (P c1 , P
c
2 , . . . ) is

a quasi-stationary distribution, and suppose we use this distribution as the initial dis-
tribution in system (6) for the unconditional distribution. That is, we take P0(0) = 0
and Pn(0) = P cn for all n ≥ 1. Under these assumptions we can calculate the proba-
bility of extinction and the expected time till extinction for the nonlinear birth-death
process.

Concerning the probability of eventual extinction, from equation (6) we have

(37)
dP0(t)

dt
= D1P1(t)

Since, by assumption, we start at the quasi-stationary distribution, we have

(38) P c1 =
P1(t)

1− P0(t)
∀t

from which we find

(39) P1(t) = P c1
(
1− P0(t)

)
∀t

Substitution of this into equation (37) gives

(40)
dP0(t)

dt
= D1P

c
1

(
1− P0(t)

)
which can be solved explicitly:

(41) P0(t) = 1− e−tD1P c
1

where we used that, by assumption, P0(0) = 0. So, for the probability of eventual
extinction we find

(42) lim
t→∞

P0(t) = 1

In other words, extinction is certain.

Concerning the time till extinction, note that P0(t) is the probability that the population
is extinct at time t, which is the same as the probability that the population went extinct
at some time less than or equal to t. So, if p(t) denotes the probability density of the
exact time of extinction, then

(43) p(t) =
dP0(t)

dt

Since P0(t) we have already calculated above, we find

(44) p(t) = D1P
c
1e
−t/,D1P c

1

which is the probability density of the exponential distribution with expected value

(45) E{t} =
(
D1P

c
1

)−1

So, if we start at the quasi-stationary distribution Pn(0) = P cn for n ≥ 1, then eventually
extinction is certain, and the time till extinction is exponentially distributed, and the
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expected time till extinction is equal to (D1P
c
1 )−1.

8.8. Example. The quasi-stationary distribution of the subcritical linear birth-death
process with Bn = βn and Dn = δn for 0 < β < δ is

(46) P cn =

(
β

δ

)n−1

−
(
β

δ

)n
for n = 1, 2, . . . , as is readily verified by substitution into (32). The expected time
till extinction starting from the quasi-stationary distribution thus is (δ − β)−1 with
variance (δ−β)−2. The super-critical and the critical cases do not have a quasi-stationary
distribution.

8.9. Another example. Consider the nonlinear birth-death process in a system with
a total number K individual living sites. Then the population size is at most K (when
all sites are occupied). The matrix A in section 8.4 thus is finite-dimensional. Suppose
further that the colonization of empty sites follows the law of mass-action, while the per
capita death rate is a constant. This gives

(47) Bn = βn(K − n) & Dn = δn

for some positive constants α and β. In the following figure, the quasi-stationary distri-
bution (P c1 , . . . , P

c
K) was calculated as the normalized eigenvector corresponding to the

dominant eigenvalue of the matrix A and the expected time till extinction was calcu-
lated as (δP c1 )−1 time units (see last line of previous section). The expected life time
of an individual is δ−1 time units, and so the expected time till population extinction
expressed in units of expected individual life times becomes 1/P c1 .

Figure 2. The quasi-stationary distribution for β = 0.1, δ = 1 and K = 20.
The corresponding expected time till extinction is 66 times the expected life
time of an individual.

Note that we can interpret equation (47) as the SIS-model where K is the (constant)
total population size, n the number of infected individuals and K − n the number of
susceptibles. Then β is the transmission rate and δ the recovery rate. The expected
length that an individual stays ill then is δ−1.
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8.10. Last example. Consider the nonlinear birth-death process in a system with

(48) Bn =
βn2

(γ + n)2
& Dn = δn

This system has an Allee threshold, which means that the process is subcritical for small
population sizes (i.e., Bn < Dn) and supercritical for intermediate population sizes (i.e.,
Bn > Dn). A mechanistic underpinning of the model is given in a later section. The
matrix A is essentially infinite-dimensional. However, since for large population sizes
the process is subcritical again, for numerical purposes, the matrix can be truncated at
some level beyond which the population is unlikely to grow. In the following figure, the
quasi-stationary distribution (P c1 , P

c
2 , . . . ) was calculated as the normalized eigenvector

corresponding to the dominant eigenvalue of the (truncated) matrix A and the expected
time till extinction was calculated as (δP c1 )−1.

Figure 3. The quasi-stationary distribution for β = 22 and γ = 5 and
δ = 1. The Allee threshold is between n = 2 and n = 3. Also for n ≥ 10
the process becomes subcritical. The matrix A was truncated at n = 25.
The expected time till extinction is 10 time units.


