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5. Stochastic differential equations

5.1. The normal distribution. The normal distribution (or Gaussian distribu-
tion) with mean µ and variance σ2 is the probability distribution on all the real
numbers with the probability density

(1) pµ,σ2(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

To denote that a random variable X is normally distributed with mean µ and
variance σ2, we write X ∼ N (µ, σ2). One readily verifies that

(2) E{X} :=

∫ +∞

−∞
x pµ,σ2(x)dx = µ

and

(3) E{(X − µ)2} :=

∫ +∞

−∞
(x− µ)2 pµ,σ2(x)dx = σ2

are indeed the mean and the variance of the distribution. If X ∼ N (µ, σ2),
then

(4)
X − µ
σ

∼ N (0, 1)

which is called the standard normal distribution with the probability density

(5) p0,1(x) =
1√
2π
e−

1
2
x2

We have seen that there exists a one-to-one relationship between a function and
its Fourier transform. The Fourier transform of a probability density is called
the characteristic function of the distribution. The characteristic function of the
standard normal distribution is

(6) p̃0,1(ω) = e−
1
2
ω2

Below we shall see why statisticians and probability theorists are so obsessed with
the normal distribution.
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5.2. The Central Limit Theorem. The Central Limit Theorem states that if
X1, X2, X3, . . . are independent and identically distributed ramdom variables with
finite mean µ and finite variance σ2 > 0, then

(7) lim
n→∞

n∑
i=1

Xi − µ
σ
√
n
∼ N (0, 1)

The amazing thing is that this conclusion does not depend on what the probability
distribution of the Xi actually looks like.

We prove the Central Limit Theorem as follows. First define

(8) Zn :=
n∑
i=1

Xi − µ
σ
√
n

and show that the probability density of Zn converges to the the probability density
of the standard normal distribution as n → ∞, i.e., we prove convergence in
distribution. It is easier, however, to show that the characteristic function of Zn
converges to the characteristic function of the standard normal distribution, which
is the same thing.

To calculate the characteristic function of Zn, first define

(9) Yi :=
Xi − µ
σ

(i = 1, 2, . . . )

The Yi then are independently and identically distributed random variables with
zero mean and unit variance and with a probability density pY (y) (which can be
calculated from the density of theXi, but we will not need that). The characteristic
function of the Yi is

(10)

p̃Y (ω) =
∫ +∞
−∞ pY (y) e−iωydy

=
∫ +∞
−∞ pY (y)

[
1− iωy − 1

2
ω2y2 + O(ω3)

]
dy

= 1− iωE{Y } − 1
2
ω2E{Y 2}+ O(ω3)

= 1− 1
2
ω2 + O(ω3)

Consequently, the characteristic function of the Yi/
√
n is

(11) p̃ Y√
n
(ω) = p̃Y

(
ω√
n

)
= 1− ω2

2n
+ O

(
ω3

n3/2

)
Since the probability density of the sum of independent random variables is the
convolution of the respective probability densities, the characteristic function of
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the sum of independent random variables is product of the respective characteristic
functions. Applying this to

(12) Zn =
n∑
i=1

Yi√
n

we find that the characteristic function of Zn is

(13) p̃Zn(ω) =

(
1− ω2

2n
+ O

(
ω3

n3/2

))n
and hence

(14) lim
n→∞

p̃Zn(ω) = e−
1
2
ω2

which is the characteristic function of the standard normal distribution (see Sec-
tion 5.1). So, the characteristic function of Zn converges to that of the standard
normal distribution, which completes the proof of the Central Limit Theorem.

There exist more general versions of the Central Limit Theorem that allow for the
Xi to have different distributions.

Since many real-world quantities (such as the landing place of a seed on the ground,
the position of a dust particle after a given amount time, etc.) result from the addi-
tive effect of many unobserved random events, the Central Limit Theorem provides
an explanation of the prevalence of the normal distribution in real life.

Likewise, many other real-world quantities (such as the life span of an individ-
ual) results from the multiplicative effect of a large number of unobserved random
events. The logarithm of those quantities, therefore, will be approximately nor-
mally distributed.

5.3. The Wiener process. The Wiener process {W (t)}t≥0 is a continuous-
time stochastic process on the real numbers and is characterized by its increments
W (t) − W (s) for t > s such that increments over non-overlapping intervals of
the same length are independently and identically distributed with zero mean and
finite variance. The consequences of this characterization are studied below.

For every regular partition s = t0 < t1 < · · · < tn = t of the interval (s, t) we
have

(15) W (t)−W (s) =
n∑
i=1

(
W (ti)−W (ti−1)

)
which is a sum of n independently and identically distributed random variables.
The partition may be arbitrarily fine by choosing n sufficiently large, and so it
follows from the Central Limit Theorem that W (t)−W (s) is normally distributed.
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Moreover, as the variance of the sum of independent random variables is equal to
the sum of the variances, it follows that the variance of the increment W (t)−W (s)
must be proportional to the length of the time interval (s, t). By an appropriate
scaling of time, we can take the constant of proportionality to be equal to one,
and so the variance of W (t)−W (s) is t− s. Thus we conclude that

(16) W (t)−W (s) ∼ N (0, t− s)
for every t > s ≥ 0. In particular, if we fix the initial condition W (0) = 0 and
take s = 0, then

(17) W (t) ∼ N (0, t)

with

(18) E{W (t)} = 0

(19) E{W (t)2} = t

(20) E{W (t)W (s)} = min{t, s}
for the mean, variance and auto-covariance of the process.

Realizations of the Wiener process are continuous. This can be understood from

(21) W (t+ ∆t)−W (t) ∼ N (0,∆t)

which for ∆t → 0 converges to the Dirac delta distribution with all probability
mass concentrated at zero, and hence

(22) Prob
{

lim
∆t→0

|W (t+ ∆t)−W (t)| = 0
}

= 1

On the other hand, realizations of the Wiener process are nowhere differentiable,
at least not in a similar sense as the process is continuous, because

(23)
W (t+ ∆t)−W (t)

∆t
∼ N

(
0,

1

∆t

)
which has a divergent variance in the limit ∆t→ 0.

5.4. Linear stochastic differential equations (SDE). Consider a stochastic
process {X(t)}t≥t0 with X(t0) = x0 (a.s.) satisfying

(24) dX(t) = −aX(t)dt+ b dW (t) (a > 0, t ≥ t0)

where dX(t) := X(t+ dt)−X(t) and dW (t) := W (t+ dt)−W (t) for an infinitesi-
mally small time step dt. The dW (t) is called the infinitesimal Wiener increment,
and the equation is called a stochastic differential equation (SDE); in particular a
linear stochastic differential equation, because the right hand side is linear in both
X and W . We now define what the equation actually means.
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Formal integration of equation (24) (i.e., acting as if the equation is an ordinary
differential equation) leads to

(25) X(t) = x0e
−a(t−t0) + b e−a(t−t0)

∫ t

t0

eaτdW

What to make of the integral on the right?

Let t0 < t1 < · · · < tn = t be a regular partition of the interval (0, t). Then we
define for any integrable function f : R+ → R

(26)

∫ t

t0

f(τ)dW := lim
n→∞

n∑
i=1

f(τi)(W (ti)−W (ti−1))

where each τi ∈ (ti−1, ti). The sum on the right is a linear combination of n
independent N (0, ti − ti−1) distributed random variables and therefore is itself
normally distributed with zero mean and variance

(27)
n∑
i=1

f(τi)
2(ti − ti−1) −→

∫ t

t0

f(τ)2dτ as n→∞.

Hence, we get

(28)

∫ t

t0

f(τ)dW ∼ N
(

0,

∫ t

t0

f(τ)2dτ

)
In particular, in equation (25),

(29)

∫ t

t0

eaτdW ∼ N
(

0,
e2a(t−t0) − 1

2a

)
and so

(30) X(t) ∼ N
(
x0e
−a(t−t0),

b2

2a

(
1− e−2a(t−t0)

))
Since a > 0, it follows that, asymptotically,

(31) lim
t→∞

X(t) ∼ N
(

0,
b2

2a

)
The stochastic differential equation (24) with initial condition X(t0) = x0 (a.s.)
uniquely defines the stochastic process {X(t)}t≥t0 . This process is called the
Ornstein-Uhlenbeck process. Note, however, that while the process is uniquely
defined, there are infinitely many different realizations of the process, called sam-
ple paths or stochastic orbits.

5.5. White noise. Consider the linear equation (24) for b→ 1 and a→ 0, which
then becomes

(32) dX(t) = dW (t)
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Figure 1. Ten sample paths of the Ornstein-Uhlenbeck process (25)
with X(0) = 5 and a = b = 1. Solid line indicates the mean and the
dashed lines the mean plus/minus the standard deviation of the distribu-
tion of X(t).

and given the initial condition X(t0) = x0 (a.s.), the solution (30) becomes

(33) X(t) ∼ N (x0, t− t0)

For arbitrary t > s ≥ t0 we thus have

(34) X(t)−X(s) ∼ N (0, t− s)
independently of the initial condition at time t0. We conclude that any two incre-
ments X(t1) − X(s1) and X(t2) − X(s2) over non-overlapping bounded intervals
of equal length are identically and independently distributed with zero mean and
finite variance. As these are the defining characteristics of the Wiener process (see
section 5.3), it follows that {X(t)} in fact is a Wiener process.

We thus find that, after having shown in section 5.3 that the Wiener process is
nowhere differentiable, it nonetheless can be described by a differential equation,
or more precisely, by a stochastic differential equation. The Wiener process is, in
some sense, differentiable after all! The derivative of the Wiener process is called
white noise, which is a stochastic process itself.

Let {ξ(t)} be the process we just called white noise. Then (32) can be rewritten
as

(35) dW (t) = ξ(t)dt

White noise is a stochastic process where all the ξ(t) are independently and iden-
tically distributed with

(36) E{ξ(t)} = 0

and

(37) E{ξ(t)ξ(s)} = δ(t− s)
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for the mean and the auto-covariance, where δ denotes the Dirac delta distribu-
tion. In particular, the white noise has infinite variance. White noise obviously
is a weird process and begins to make sense only after integration, which gives
the Wiener process. A similar situation we find in the case of the Dirac delta
distribution, which can be interpreted as the derivative of the unit step function
at zero, exactly where the function in the classical sense is non-differentiable.

5.6. Non-linear stochastic differential equations. Most of the time we shall
be dealing with linear SDEs. Still it is important to know something of non-
linear SDEs as well, especially those SDEs with multiplicative noise (i.e., with a
non-linear noise term).

Consider the non-linear SDE with multiplicative noise

(38) dX = WdW

which can formally be solved as

(39) X(t) =

∫ t

t0

WdW

But what to make of this integral? What does it mean? Lets proceed as in the
previous section, i.e., let t0 < t1 < · · · < tn = t be a regular partition of the interval
(0, t), and define

(40)

∫ t

t0

WdW := lim
n→∞

n∑
i=1

W (τi)(W (ti)−W (ti−1))

where (and now we want to be explicit about this)

(41) τi = (1− α)ti−1 + αti

for some fixed α ∈ [0, 1]. One wouldn’t like the definition of the integral to depend
on the particular choice of alpha, but unfortunately it will. To see this we take
the expectation of the sum on the right side and use the property of the Wiener
process that

(42) E{W (t)W (s)} = min{t, s}

Since ti−1 ≤ τi ≤ ti, this gives

(43)

∑n
i=1

(
E{W (τi)W (ti)} − E{W (τi)W (ti−1)}

)
=
∑n

i=1(τi − ti−1)

= α(t− t0)
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Hence we find

(44) E
{∫ t

t0

WdW

}
= αt

which depends on the particular choice of α. But then also the solution (39) of
the SDE (38) will depend on the choice of α.

Now consider the more general non-linear SDE with multiplicative noise

(45) dX = f(X)dt+ g(X)dW

Formally we can define a solution of this equation as any stochastic process
{X(t)}t≥0 that satisfies the integral equation

(46) X(t) =

∫ t

t0

f(X)dτ +

∫ t

t0

g(X)dW

The first integral will not give any problem, but the definition of the second integral
as a limit of a sum over a partition requires an extra rule that specifies at what
points the integrant is to be sampled. Without such integration rule, the SDE is
not well-defined and not interpretable.

Although there are infinitely many possibilities for the α, in practice only two are
being used: α = 0 and α = 1/2. The first leads to the so-called Ito calculus, and
the second to the Stratonovitch calculus. Without proof we state that the following
SDEs together with their respective integration rules as indicated in parentheses
have the same solutions, i.e., describe the same stochastic process:

(47) dX = f(X)dt+ g(X)dW (S)

(48) dX =
(
f(X) +

1

2
g′(X)g(X)

)
dt+ g(X)dW (I)

Each of these two descriptions has its own advantages and disadvantages. We state
without proof that in the Stratonovitch calculus we can integrate and differentiate
as if the stochastic processes were ordinary functions, whereas in the Ito calculus
the calculation of expectations as well as the numerical integration of the SDE are
easier. Depending on what particular information we want to get out of a given
SDE, we may prefer either the Ito or the Stratonovitch representation. This will
be made clear with the following section.

Note from equations (47) and (??) that if g is the constant function (i.e., g′(x) = 0
for all x), then the Ito interpretation and the Stratonovitch interpretation make
no difference at all. That is why in the case of a linear stochastic stochastic dif-
ferential equation we do not need to specify the integration rule (see section 5.4).
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5.7. Example. Consider the non-linear SDE

(49)

{
dX = XdW (S)

X(0) = x0

As indicated between the parentheses, the equation has to be integrated accord-
ing to the Stratonovich rule which follows the ordinary rules of calculus. This
gives

(50) X(t) = x0E
W (t)

In other words, X(t) has a log-normal distribution, i.e., logX(t) ∼ N (log x0, t).

Next, consider the SDE

(51)

{
dX = XdW (I)

X(0) = x0

which looks the same but which has to be integrated according to a different rule,
namely the Ito rule. Easiest way to solve the equation is first to transform it into a
Stratonovitch equation. A comparison with the Ito equation (48) shows that then
we should take g(X) = X and f(X) = −1

2
X. Substituting these functions into

the Stratonovitch equation (47) gives

(52)

{
dX = −1

2
Xdt+XdW (S)

X(0) = x0

Equations (51) and (52) have the same solutions, but the latter can be integrated
using the ordinary rules of calculus, which gives

(53) X(t) = x0e
− t

2
+W (t)

So, X(t) gain has a log-normal distribution, but with different parameters, i.e.,
logX(t) ∼ N (log x0 − 1

2
t, t).

It is obvious why one would like to have an SDE in the Stratonovitch form, because
then we can use the normal rules of calculus. But what is the Ito form good for?
To begin with, the Ito SDE is good to calculate expected values. Remember from
the definition (40) that for the Ito integral the integrant is sampled at the beginning
of each interval and therefore is independent of the Wiener increment over that
interval. Thus, taking expectations in the Ito equation (51) and using that the
expectation of the product of two independent random variables is equal to the
product of their expectations, we get

(54)


dE{X} = E{XdW}

= E{X}E{dW}
= E{X} · 0
= 0

E{X(0)} = x0
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So, the expectation of X(t) stays constant in time, i.e.,

(55) E{X(t)} = x0

How is this for the Stratonovitch equation (49)? Remember that in the definition
of the Stratonovitch integral, the integrant is sampled in the middle of each interval
of the partition, and so the integrant and the Wiener increment over that interval
are not independent. To calculate the expectation of the process defined by the
Stratonovitch equation (49) we must first put it in the Ito form in order to be able
to exploit that the expectation of XdW is equal to the product of expectations of
X and dW . From equations (47) and (48) we see that the Stratonovitch equation
(49) is equivalent to the Ito equation

(56)

{
dX = 1

2
Xdt+XdW (I)

X(0) = x0

Taking expectations we get

(57)


dE{X} = 1

2
E{X}dt+ E{XdW}

= 1
2
E{X}dt+ E{X}E{dW}

= 1
2
E{X}dt+ E{X} · 0

= 1
2
E{X}dt

E{X(0)} = x0

and so

(58) E{X(t)} = x0e
1
2
t

Figure 2. Numerical integration of the Ito equation dX = XdW .
Twenty sample paths of logX(t) versus t with initial condition logX(0) =
0. Solid line indicates the mean and the dashed lines the mean plus/minus
the standard deviation of the distribution of logX(t).

5.8. Numerical integration of SDEs. The Stratonovitch equation we can solve
using de rules of ordinary calculus. The Ito equation is handy when it comes
to calculating expectations, because the integrant and the Wiener increment are
probabilistically independent. Another advantage of the Ito form is that it suggest
a method for solving the SDE numerically.
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Figure 3. Numerical integration of the Stratonovich equation dX =
XdW , which was solved by numerically integrating the equivalent Ito
equation dX = 1

2Xdt + XdW . Twenty sample paths of logX(t) ver-
sus t with initial condition logX(0) = 0. Solid line indicates the mean
and the dashed lines the mean plus/minus the standard deviation of the
distribution of logX(t).

Consider the Ito equation

(59) dX = h(X)dt+ g(X)dW (I)

For small ∆t > 0 we can approximate this by

(60) ∆X(t) = h(X(t))∆t+ g(X(t))∆W (t)

where

(61)

∆X(t) := X(t+ ∆t)−X(t)

∆W (t) := W (t+ ∆t)−W (t)

∆W (t) ∼ N (0,∆t)

A similar discretization of the Stratonovitch equation

(62) dX = h(X)dt+ g(X)dW (S)

would give

(63) ∆X(t) = h(X(t+
1

2
∆t))∆t+ g(X(t+

1

2
∆t))∆W (t)

which, if we know X only up to and including time t (but not further), is not
practical.

So, let’s go back to the discretization of the Ito equation, which we can rewrite
as

(64)
X(t+ ∆t) = X(t) + h(X(t))∆t+ g(X(t))

√
∆t Z(t)

Z(t) ∼ N (0, 1) and i.i.d. for all t ≥ 0
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Most program packages contain a random number generator for the standard nor-
mal distribution N (0, 1). Numerical iteration of the discretization of the Ito equa-
tion n times gives us an approximation of a sample path (or realization) of the
stochastic process {X(t)}t≥0 for the times t = 0,∆t, 2∆t, 3∆t, . . . , n∆t.

5.9. SDEs and the Fokker-Planck equation There are at least two ways
to describe a stochastic process {X(t)}: (i) one can describe the evolution of
individual realizations (i.e., sample paths) of the process – this is in essence what
is done by a stochastic differential equation. (ii) One can also describe how the
probability distribution p(x, t) of the random variable X(t) changes over time – this
is done by the so-called Fokker-Planck equation. It should not come as a surprise
that what the Fokker-Planck equation, too, depends on the sampling oprocedure,
i.e., on α ∈ [0, 1]:

(65) ∂tp(x, t) = −∂x
([
f(x) + αg′(x)g(x)

]
p(x, t)

)
+

1

2
∂xx

(
g(x)2p(x, t)

)
This we give without proof. Hence, the Ito differential equation

(66) dX = f(X)dt+ g(X)dW (I)

with α = 0 corresponds to the Fokker-Planck equation

(67) ∂tp(x, t) = −∂x
(
f(x)p(x, t)

)
+

1

2
∂xx
(
g(x)2p(x, t)

)
and the Stratonovitch equation

(68) dX = f(X)dt+ g(X)dW (S)

with α = 1/2 corresponds to the Fokker-Planck equation

(69) ∂tp(x, t) = −∂x
([
f(x) +

1

2
g′(x)g(x)

]
p(x, t)

)
+

1

2
∂xx
(
g(x)2p(x, t)

)
The Focker-Planck equation contains the same information as the corresponding
SDE – they are equivalent representations of the same stochastic process.

In particular, the linear equation

(70) dX = 2DdW

(no need to specify whether it is Ito or Stratonovics; see last paragraph of section
5.6) is equivalent to the so-called heat equation

(71) ∂tp(x, t) = D∂xxp(x, t)

with diffusion coefficient D > 0.


