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4. Fluctuating parameters in single DDE models

4.1. The general system. Consider the following population model.

(1)
dx

dt
= f(x, xτ , θ)

where xτ (t) = x(t− τ) and where θ(t) is a small amplitude periodic driver fluctu-
ating about the constant θ̄. Let further

(2) 0 = f(x̄, x̄, θ̄)

i.e., x̄ is an equilibrium solution if θ(t) = θ̄ for all t. Linearization of the DDE
about the point (x, xτ , θ) = (x̄, x̄, θ̄) gives

(3)
du

dt
= au+ buτ + cη

where u = x − x̄ and uτ = xτ − x̄ and η = θ − θ̄ and a = ∂xf(x̄, x̄, θ̄) and
b = ∂xτf(x̄, x̄, θ̄) and c = ∂θf(x̄, x̄, θ̄). We assume that the equilibrium x̄ is stable
if c = 0 (i.e., if θ(t) = θ̄ for all t), the conditions for which have been given in the
previous section.

How do the fluctuations in η affect the solution u in the linear DDE? To answer
that question we introduce the Fourier integral transform.

4.2. The Fourier integral transform. A real or complex function f(t) on

−∞ < t < +∞ is absolutely integrable if
∫ +∞
−∞ |f(t)|dt exists and is finite. The

function is piece-wise continuous if it has at most countably many points where it
is discontinuous and these points are all isolated.

Suppose f is absolutely integrable and piece-wise continuous. Then the Fourier
transform of f is defined as the function

(4) f̃(ω) =

∫ +∞

−∞
f(t)e−iωtdt

If f̃ is also absolutely integrable and piece-wise continuous, then, at every point t
of continuity,

(5) f(t) =
1

2π

∫ +∞

−∞
f̃(ω)e+iωtdω

1



2 STEFAN GERITZ & FENGYING WEI

which is called the inverse Fourier transform of f̃ .

The inverse Fourier transform gives the decomposition of the function f(t) into

functions of the form eiωt each with a weighing factor f̃(ω)/2π. Since eiωt is a
periodic function with frequency ω, the amplitude of the ω-frequency component
in the function f(t) is given by |f̃(ω)|/2π. This is a useful observation, because we
are interested in how a population model transforms the amplitudes of the various
frequency components in the driver.

Here are some useful properties of the Fourier transform:

(a) The Fourier transform and the inverse Fourier transform are linear opera-
tors (i.e., the transform of a linear combination of functions is equal to the
linear combination of the transforms of the same functions).

(b) ˜̃f(t) = 2πf(−t)

(c) (̃ d
dt
f)(ω) = iωf̃(ω)

(d) d
dω
f̃(ω) = −i(̃tf)(ω)

(e) f̃τ (ω) = e−iωτ f̃(ω) where fτ (t) := f(t− τ)

(f) (̃f ∗ h)(ω) = f̃(ω)h̃(ω) where (f ∗ h)(t) :=
∫ +∞
−∞ f(τ)h(t− τ)dτ

(g) (̃fh)(ω) = 1
2π

(f̃ ∗ h̃)(−ω)

(h)
∫ +∞
−∞ f(t)h̃(t)dt =

∫ +∞
−∞ f̃(t)h(t)dt

The proofs are left as an exercise.

4.3. The Dirac delta distribution. The Fourier transform as introduced in the
previous section presumes absolute integrability of the function being transformed.
This excludes such functions as tn, cos(ω0t), e

iω0t and other common functions. To
remedy this, we introduce the Dirac delta distribution. The Dirac delta distribution
is a probability distribution where all probability mass is concentrated at zero. If
we formally denote the probability “density” of the Dirac delta distribution by
δ(t), then

(6)

∫ +∞

−∞
δ(t)dt = 1

and

(7)

∫ +∞

−∞
δ(t)f(t)dt = E{f(t)} = f(0)
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and, in particular,

(8) δ̃(ω) =

∫ +∞

−∞
δ(t)e−iωtdt = E{e−iωt} = 1

Using the above together with property (b) of the list of properties of the Fourier
transform in the previous subsection, we find that

(9) 1̃ = ˜̃δ(t) = 2πδ(−t) = 2πδ(t)

We thus find that the Fourier transform of a constant function (even though a
constant function that is not identical to zero is not absolutely integrable) ex-
ists provided we accept the Dirac delta distribution as a legitimate mathematical
object.

Here are some more functions that are not absolutely integrable and yet have a
Fourier transform:

(a) (̃tn)(ω) = 2π n! δ(ω)/(iω)n for n = 0, 1, . . .

(b) ẽiω0t(ω) = 2πδ(ω − ω0)

(c) ˜cos(ω0t) = πδ(ω − ω0) + πδ(ω + ω0)

The proofs are left as an exercise.

4.4. The transfer function. We can solve the linear DDE (3) using the Fourier
transform (4) and its inverse (5): taking Fourier transforms on both sides of the
linear DDE (3) gives

(10) iωũ(ω) = aũ(ω) + be−iωτ ũ(ω) + cη̃(ω)

which can solved for ũ(ω):

(11) ũ(ω) =
c

iω − a− be−iωτ
η̃(ω)

Taking the inverse Fourier transform, we get an explicit solution of the linear
DDE:

(12) u(t) =
1

2π

∫ +∞

−∞

ceiωtη̃(ω)

iω − a− be−iωτ
dω

How useful this explicit solution is I do not know. Actually, much more useful is
equation (11), which we rewrite as

(13) ũ(ω) = T (ω)η̃(ω)

where

(14) T (ω) =
c

iω − a− be−iωτ
is the transfer function.
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Remember from section (4.2) that |η̃(ω)|/2π is the amplitude of the ω-frequency
component in the function η̃, and |ũ(ω)|/2π is the amplitude of the ω-frequency
component in the function ũ. So, the amplification factor, or gain, for the frequency
ω is given by |ũ(ω)|/|η̃(ω)| = |T (ω)|. Likewise, the phase-shift is given by arg T (ω).
(Notice that these results are consistent with what we found for the ODEs in
Section 2.2.)

We now shall apply the above to a number of examples.

4.5. Example. This is a continuation of the example if Section 3.1:

(15)
dx

dt
= βe−ατxτ − δx−

γ

2
x2

where β is the birth rate, γ the contest rate, δ the death rate of adults, α the
death rate of juveniles, and τ the fixed developmental delay.

If the parameters are not constants but vary in time, then we must be very careful
about those particular parameters that are associated with some event in the past.
For example, the birth rate β in the above equation becomes the birth rate at time
t − τ and not at time t, i.e., βτ (t) := β(t − τ) and not β(t). Likewise, if α varies
in time, then the juvenile survival probability till maturation becomes

(16) e−
∫ t
t−τ α(s)ds =: e−αψ(t)τ

where ψ is the uniform distribution over the interval (0, τ) and

(17) αψ(t) :=

∫ ∞
0

α(t− s)ψ(s)ds.

The parameters δ and γ act instantaneously and therefore can be treated in a
straightforward way.

Rewriting the above model with varying parameters thus gives

(18)
dx(t)

dt
= e−αψ(t)τβτ (t)xτ (t)− δ(t)x(t)− γ(t)

2
x(t)2

We shall vary only one parameter in turn.

4.6. Varying the adult mortality rate. Varying the adult mortality rate δ in
equation (18) while keeping the other parameters constant gives

(19)
dx(t)

dt
= βe−ατxτ (t)− δ(t)x(t)− γ

2
x(t)2

For constant δ(t) = δ̄, the equilibrium would be

(20) x̄ =
2

γ
(βe−ατ − δ̄)
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Linearization at (x, xτ , δ) = (x̄, x̄, δ̄) gives

(21)
du

dt
= −(δ̄ + γx̄)u+ βe−ατuτ − x̄η

where u = x − x̄ and uτ = xτ − x̄ and η = δ − δ̄. Taking Fourier transforms on
both sides gives

(22) iωũ(ω) = −(δ̄ + γx̄)ũ(ω) + βe−ατ−iωτ ũ(ω)− x̄η̃(ω)

Solving for ũ gives

(23) ũ(ω) =
−x̄

iω + δ̄ + γx̄− βe−ατ−iωτ
η̃(ω)

The transfer function thus is

(24) T (ω) =
−x̄

iω + δ̄ + γx̄− βe−ατ−iωτ

The following figures give the main filter characteristics of the model with respect
to fluctuations in the parameter δ.

Figure 1. Gain vs. frequency for fluctuations in δ.

Figure 2. Phase-shift vs. frequency for fluctuations in δ.
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4.7. Varying the birth rate. Varying the birth rate β in equation (18) while
keeping the other parameters constant gives

(25)
dx(t)

dt
= e−ατβτ (t)xτ (t)− δx(t)− γ

2
x(t)2

For constant β(t) = β̄, the equilibrium would be

(26) x̄ =
2

γ
(β̄e−ατ − δ)

Linearization at (x, xτ , β) = (x̄, x̄, β̄) gives

(27)
du

dt
= −(δ + γx̄)u+ β̄e−ατuτ + x̄e−ατητ

where u = x− x̄ and uτ = xτ − x̄ and ητ = βτ − β̄. Taking Fourier transforms on
both sides gives

(28) iωũ(ω) = −(δ + γx̄)ũ(ω) + β̄e−ατ−iωτ ũ(ω) + x̄e−ατ−iωτ η̃(ω)

Solving for ũ gives

(29) ũ(ω) =
x̄e−ατ−iωτ

iω + δ + γx̄− β̄e−ατ−iωτ
η̃(ω)

The transfer function thus is

(30) T (ω) =
x̄e−ατ−iωτ

iω + δ + γx̄− β̄e−ατ−iωτ

The following figures give the main filter characteristics of the model with respect
to fluctuations in the parameter β.

Figure 3. Gain vs. frequency for fluctuations in β.

4.8. Varying the juvenile death rate. Varying the juvenile death rate α in
equation (18) while keeping the other parameters constant gives

(31)
dx(t)

dt
= βe−αψ(t)τxτ (t)− δx(t)− γ

2
x(t)2



STOCHASTIC POPULATION MODELS (SPRING 2015) 7

Figure 4. Phase-shift vs. frequency for fluctuations in β.

For constant α(t) = ᾱ, the equilibrium would be

(32) x̄ =
2

γ
(βe−ᾱτ − δ)

Linearization at (x, xτ , α) = (x̄, x̄, ᾱ) gives

(33)
du

dt
= −(δ + γx̄)u+ βe−ᾱτuτ − τ x̄βe−ᾱτηψ

where u = x − x̄ and uτ = xτ − x̄ and ηψ = αψ − ᾱ. To calculate the Fourier
transform of ηψ, notice that ηψ = η∗φ, and so we can use property (f) from Section
4.2. The only thing we have to know then is the Fourier transform of ψ, which is
directly calculated from the definition (4) and turns out to be

(34) ψ̃(ω) =
1

τ

∫ τ

0

e−iωtdt =
1− e−iωτ

iωτ

Taking Fourier transforms on both sides of Equation (33) gives

(35) iωũ(ω) = −(δ + γx̄)ũ(ω) + βe−ᾱτ−iωτ ũ(ω)− τ x̄βe−ᾱτ (1− e−iωτ )
iωτ

η̃(ω)

Solving for ũ gives

(36) ũ(ω) =
−τ x̄βe−ᾱτ (1− e−iωτ )

(iω + δ + γx̄− βe−ᾱτ−iωτ )(iωτ)
η̃(ω)

The transfer function thus is

(37) T (ω) =
−τ x̄βe−ᾱτ (1− e−iωτ )

(iω + δ + γx̄− βe−ᾱτ−iωτ )(iωτ)

The following figures give the main filter characteristics of the model with respect
to fluctuations in the parameter α.
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Figure 5. Gain vs. frequency for fluctuations in α.

Figure 6. Phase-shift vs. frequency for fluctuations in α.


