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3. Delay differential equations

3.1. Example. Consider the mechanism underlying the logistic equation as pre-
sented in section 1.8. But now we distinguish between adult (X) and juvenile (Y)
individuals and the following processes:

(1)

X
β−→ X + Y (birth)

X + X
γ−→ X + † (interference competition)

X
δ−→ † (death of an adult)

Y
α−→ † (death of a juvenile)

Y
ϕ

=⇒ X (maturation)

The arrow representing the transition from juvenile to adult is of a different kind
than the other arrows. We do this to indicate that we will not use mass-action
to model maturation but instead use a developmental delay. The probability dis-
tribution of the length of the juvenile period among the surviving juveniles that
are just turning into adults is given by the probability density ϕ. Or, in other
words, ϕ is the conditional probability density of the length of the juvenile period,
given survival till maturation. The probability of a newborn reaching adulthood
depends on the length of the juvenile period. With a constant death rate α, the
unconditional probability of a newborn eventually becoming adult is

(2)

∫ ∞
0

ϕ(τ)e−ατdτ

and with a constant per capita birth rate β, the rate at which new adults are
entering to the population at time t is

(3)

∫ ∞
0

βx(t− τ)ϕ(τ)e−ατdτ

where x(t − τ) is the population density at time t − τ . The population equation
then becomes

(4)
dx(t)

dt
=

∫ ∞
0

βx(t− τ)ϕ(τ)e−ατdτ − δx(t)− γ

2
x(t)2

The above equation is an example of a delay differential equation (DDE). Because
the delay is not of fixed length but distributed according to probability density ϕ,
we talk about a DDE with a distributed delay.
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As special case, assume that the developmental delay has a fixed length τ0, i.e.,
ϕ(τ) = δD(τ − τ0) is the Dirac-delta distribution, i.e., a probability “density”
with all probability mass concentrated at τ = τ0. The population equation now
becomes

(5)
dx

dt
= βe−ατ0 xτ0 − δx−

1

2
γx2

where

(6) xτ0(t) = x(t− τ0).

Note that for τ0 → 0 we retrieve the logistic equation as in section 1.8.

3.2. Fixed delays. Consider the general DDE

(7)
dx

dt
= f(x, xτ )

for a single fixed delay τ > 0. An equilibrium is defined as a constant solution
x(t) = x̄, i.e., a solution such that

(8) 0 = f(x̄, x̄)

While the stability of an equilibrium of a single ODE can be established graphically,
this is not possible here. Instead we use a technique called local stability analysis.
To that end, let u = x − x̄ and uτ = xτ − x̄ denote perturbations from the
equilibrium. As a linear approximation of the DDE for small perturbations we
have

(9)
du

dt
= au+ buτ

where

(10) a = ∂xf(x̄, x̄) and b = ∂xτf(x̄, x̄)

The equilibrium x = x̄ in the original equation corresponds to the equilibrium
u = 0 in the linear approximation.

Substitution of the “trial solution” u(t) = eλt into the linear DDE (9) gives

(11) λ = a+ be−λτ

This is the characteristic equation of the linear DDE, and λ is an eigenvalue.
The rationale behind using this “trial solution” is that we can write the general
solution to the linear DDE as a linear combination of functions of this form but
with different values of λ all satisfying the characteristic equation.

Writing λ = µ + iν for µ, ν ∈ R and splitting the real and imaginary parts of the
characteristic equation and multiplication by τ gives us an equivalent but more
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useful representation

(12)
µτ = aτ + bτe−µτ cos(ντ)

ντ = − bτe−µτ sin(ντ)

Our first task is to find for which combinations (aτ, bτ) the equilibrium u = 0 is
stable and for which it is unstable.

The equilibrium u = 0 is stable if all eigenvalues have a negative real part (i.e.,
µ < 0 for all λ), and the equilibrium is unstable if at least one eigenvalue has a
positive real part (i.e., µ > 0 for at least one λ).

Instead of fixing (aτ, bτ) and then checking whether the corresponding eigenvalues
have positive or negative real parts, we turn the problem around by substituting
µ = 0 into the characteristic equation and solving for (aτ, bτ) to find the boundary
between the regions of stability and instability in the (aτ, bτ)-plane.

The stability boundary:

Substitution of µ = 0 and ω 6= 0 into the characteristic equation (12) and solving
for (aτ, bτ) gives

(13)

aτ = ντ
tan(ντ)

bτ = −ντ
sin(ντ)

By varying ντ we get different values of (aτ, bτ) tracing out curves in the (aτ, bτ)-
plane as shown in Figure 1. Each of these curves corresponds to a pair of complex
eigenvalues lying exactly on the imaginary axis. Crossing one of these curves in the
(aτ, bτ)-plane corresponds to a pair of complex eigenvalues crossing the imaginary
axis.

Substitution of µ = 0 and ν = 0 into the characteristic equation (12) and solving
for (aτ, bτ) gives

(14) aτ + bτ = 0

which gives an additional line in the (aτ, bτ)-plane corresponding to the existence
of a real eigenvalue equal to zero (dashed bold line in Figure 1).

Which of the regions in the figure correspond to all eigenvalues having negative
real parts or at least one eigenvalue having a positive real part? To answer that
question, take (aτ, bτ) = (−1, 0) and solve the characteristic equation for λ. This
gives the unique solution λ = −1, i.e., all eigenvalues (there is only one for this
case!) have a negative real part, and so the reference point (−1, 0) is inside the
stable region. The first crossing of the imaginary axis happens at the dashed bold
line in Figure 1 or at the solid bold curve emanating from the point (aτ, bτ) =
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Figure 1. Values of

(aτ, bτ) for which there
exists a pair of com-
plex eigenvalues exactly
on the imaginary axis
(solid bold lines) or for
which there exists a real
eigenvalue equal to zero
(dashed bold line). The
point (1,−1) is indicated
with a solid circle.

Figure 2. For values

of (aτ, bτ) inside the
grey region the equilib-
rium u = 0 is stable,
whereas outside it is un-
stable. Stability is lost
when we cross the solid
line (where a pair of com-
plex eigenvalues crosses
the imaginary axis from
the left to the right) or
the dashed line (where
a real-valued eigenvalue
crosses zero from the left
to the right).

(1,−1). The space in between these two lines hence corresponds to the stability
region (Figure 2)

Overdamped and underdamped:

For values of (aτ, bτ) inside the stability region, the solution of the linear DDE
(9) converges monotonically to zero (the so-called overdamped case) if there exists
a real-valued eigenvalue. But if all eigenvalues are complex, then convergence
will be in an oscilatory fashion (the so-called underdamped case). For the filter
characteristics of the system this will turn out to be an important distinction.

To find out for which (aτ, bτ) there exist real eigenvalues, substitute ωτ = 0 into
the characteristic equation (12), which gives, after a minor rearrangement,

(15) aτ = µτ − bτe−µτ

Figure 3 gives the graph of aτ as a function of µτ for fixed value of bτ .
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Figure 3. Graph of aτ as a function of µτ for fixed bτ > 0 (left) and bτ ≤ 0 (right).

From the left panel it can be seen that if bτ < 0 and aτ < 1 + log(−bτ), equation
(15) cannot be satisfied for any µτ , while if aτ > 1 + log(−bτ), there are two
values of µτ that satisfy the equation, and hence there are two real eigenvalues.
From the right panel, however, it can be seen that for every choice of (aτ, bτ) there
can be found a ϕτ that satisfy the equation, and hence there always exists a real
eigenvalue.

Figure 4. The region in the (aτ, bτ)-plane where bτ < 0 and aτ < 1 + log(−bτ).

3.3. Example − continued. Let us now apply the above theory the example
developed in section 3.1, i.e.,

(16)
dx

dt
= βe−ατxτ − δx−

1

2
γx2

The equilibrium is found by equating the right hand side with zero, which gives

(17) x̄ =
2

γ

(
βe−ατ − δ

)
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Figure 5. Stability boundaries for the system du
dt

= au+ buτ .

The coefficients aτ and bτ are

(18) aτ = δτ − 2βτe−ατ and bτ = βτe−ατ

From this we immediately see that the x̄ > 0 if and only if aτ + bτ < 0 (white
region in the next figure). Moreover, we have

(19) bτ =
1

2
(δτ − aτ)

whenever x̄ > 0. Thus, (aτ, bτ) is constraint to a half-line that lies entirely in the
”stable and overdamped”-region (see figure).

Hence we conclude that in the example with a fixed delay the positive equilibrium,
whenever it exists, is stable and over-damped.

3.4. Distributed delays. Consider the general DDE for a single distributed
delay

(20)
dx

dt
= f(x, xφ)

where

(21) xφ(t) =

∫ ∞
0

x(t− τ)φ(τ)dτ

for some probability density φ. Suppose x̄ is an equilibrium, i.e., f(x̄, x̄) = 0.
To study the stability properties of x̄, let u = x − x̄ and uφ = xφ − x̄ denote
perturbations from the equilibrium. Then, as a linear approximation of the DDE
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Figure 6. Stability in the delayed logistic dx
dt

= βxτe
−

∫ τ
0 α(s)ds −

δx − 1
2
γx2. For points (aτ, bτ) inside the grey region no positive

equilibrium exists.

for small perturbations, we have

(22)
du

dt
= au+ buφ

where

(23) a = ∂xf(x̄, x̄) and b = ∂xφf(x̄, x̄)

Substitution of u(t) = eλt with λ = µ+ iω gives the characteristic equation

(24) λ = a+ b

∫ ∞
0

φ(τ)e−λτdτ

The feasibility of getting any information out of this equation very much depends
on the particular choice of φ. We shall treat the case of distributed delays by
means of example only.

3.4. Example distributed delay. Let X denote an adult individual and Y an
egg, and consider the following kinds of individual behavior:

(25)

X
α−→ X + Y (reproduction)

Y
β−→ † (death of an egg)

X + Y
γ−→ X + † (cannibalism)

X
δ−→ † (death of an adult)

Y
ϕ

=⇒ X (hatching)
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The rate at population level with which eggs were being produced at time t − τ
is

(26) αx(t− τ)

The survival probability that an egg that was produced at time t− τ is still alive
at time t is equal to

(27) e−βτ−γ
∫ t
t−τ x(s)ds

The probability density that an egg that was produced at time t − τ will hatch
at time t, given that it is still alive at time t, is equal to ϕ(τ). Putting all this
together we find that the rate of recruitment of new adults into the population
is

(28)

∫ ∞
0

ϕ(τ)αx(t− τ)e−βτ−γ
∫ t
t−τ x(s)dsdτ

Taking adult deaths into account, we finally get as population equation

(29)
dx(t)

dt
=

∫ ∞
0

ϕ(τ)αx(t− τ)e−βτ−γ
∫ t
t−τ x(s)dsdτ − δx(t)

Suppose all probability mass of ϕ is concentrated at a specific value of τ (i.e., ϕ is
Dirac-delta distribution). Then

(30)
dx(t)

dt
= αx(t− τ)e−βτ−γ

∫ t
t−τ x(s)ds − δx(t)

Let ψ be the uniform distribution on the interval (0, τ). Then we can write the
above more elegantly as

(31)
dx

dt
= αxτe

−βτ−γτxψ − δx

where xτ0 = x(t− τ0) and

(32) xψ(t) =

∫ ∞
0

ψ(τ)x(t− τ)dτ

Now, this is interesting: although we assume a fixed time till hatching, we still
have a distributed delay in the exponent. Moreover, we also have a fixed delay in
front of the exponential.

Equation (31) has a positive equilibrium

(33) x̄ =
log(α/δ)− βτ

γτ
> 0

whenever log(α/δ) − βτ > 0. To determine the stability of x̄, define u = x − x̄,
uτ = xτ − x̄ and uψ = xψ − x̄. Then, as linear approximation of equation (31), we
get

(34)
du

dt
= −δu+ δuτ − δ

(
log

α

δ
− βτ

)
uψ
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Substitution of u(t) = eλt with λ = µ+ iω gives the characteristic equation

(35) λτ =
(
aτλτ + bτ

)1− e−λτ

λτ
where

(36) aτ = −δτ and bτ = −δτ
(

log(α/δ)− βτ
)

Obviously, aτ < 0. But also bτ < 0 whenever x̄ > 0.

To find the zero-crossings of the real parts of complex eigenvalues, let λ = iω 6= 0.
Splitting the real and imaginary parts of the characteristic equation gives

(37)

 0 = aτ
(
1− cos(ωτ)

)
+ bτ sin(ωτ)

ωτ

bτ = aτ sin(ωτ)− bτ 1−cos(ωτ)
ωτ

Solving for aτ and bτ gives

(38)


aτ = 1

2
ωτ cot

(
ωτ
2

)
bτ = − (ωτ)2

2

which describes a parameterized curve in the (aτ, bτ)-plane (solid line in next
figure).

Figure 7. Stability (grey) and instability (white). Only the nega-
tive quadrant can be interpreted in the cannibalism model.

To find the zero-crossings of real eigenvalues we set λ = 0. This gives simply bτ = 0
(dashed line in the above figure). To find which region corresponds to stability
and which to instability, we use a calibration point: substitute, e.g., λ = −1 and
aτ = −10 into the characteristic equation (35) and solve for bτ . This gives bτ =
−10.582 . . . . Putting it the other way: the point (aτ, bτ) = (−10,−10.582 . . . )
gives λ = −1 and hence lies inside the stability region (see above figure).

The expressions in (36) show that only aτ < 0 and bτ < 0 are possible. Varying
the model parameters α, . . . , δ and/or the fixed delay time τ affects the aτ and the
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bτ (and hence the stability of the equilibrium) according to equations (36). An
example of how is shown in the following figure.

Figure 8. The effect of the delay τ and the density-independent
egg mortality β on (aτ, bτ). Changes in τ cause a movement along
the (thin) curves, while changes in β cause a movement across the
curves as indicated.

It can be seen that increasing the delay time τ initially leads to a loss of stability,
but eventually stability is regained. Increasing egg mortality β has a stabilizing
effect, but the positive equilibrium becomes smaller and reaches zero once bτ =
0.


