STOCHASTIC POPULATION MODELS (SPRING 2015)

STEFAN GERITZ & FENGYING WEI

2. FLUCTUATING PARAMETERS IN A SINGLE-ODE MODEL

2.1. The general idea. Consider the scalar population equation

) & f0)

where 6 is a scalar parameter. How would x respond to fluctuations in 87 We
study the response to small fluctuations near a stable equilibrium. Suppose

f(z,0)=0
0. f(z,0) <0

(2)

i.e., that z = Z is a stable equilibrium for given constant 6 = 6.

dx/dt dx/dt

FIGURE 1. Stability and instability of # depending on the slope of f(x,8).

If 7 is stable, then small fluctuations in § around 8 will cause only small fluctuations
in z around . We write

(3) _
0(t) = 0+ n(t)

where £(t) and 7(t) are the deviations of, respectively, x from z and @ from 0. If
1£(t)| and |n(t)| are uniformly small (i.e., for all ¢ > 0), then we can replace the
population equation by the linear approximation
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The solution of the linear system is

i gt o
(5) £(6) = E(t0)e 150 4 0,5(2,0) [ ()0 ar
to
Since by assumption 9, f(Z,0) < 0, the first term converges to zero as t — 0o
(or tg — —oo) and therefore is called the transient part of the solution. We are
interested in the the persistent solution, i.e.,
t

(6) £() = Dy f (2, 0) / (7)o @) gy

—o
Notice that the above defines a linear map A : n — £ that converts fluctuations in
71 into fluctuations in &, i.e., converts fluctuations in the “input” 6 into fluctuations
in the “output” z. In particular, we have

A a@f ('f7 é) iwt
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i.e., n(t) = e is an eigenfuction of A with corresponding eigenvalue
a@f(jv 0_)

8 T(w)= ——2"2

(8) W == 7w

which is called the transfer function.

The theory of Fourier series tells us that every (sufficiently smooth) periodic func-
tion can be written as a linear combination of countably many functions of the
form e™* for different values of w. As a simple example, consider

eiwt _ e—iwt
21
Exploiting the linearity of A and the fact that ¢! and e~
with respective eigenvalues T'(w) and T'(—w), we have

T<w)€iwt _ T(_w>e—iwt

(9) sin(wt) =

wt are eigenfunctions

(10) sin(wt) N 5
i
which can be written more conveniently as
(11) sin(wt) = [T(w)|sin (wt + arg T'(w))

where |T'(w)] is the modulus of the transfer function and arg 7'(w) its argument.

The significance of the transfer function now becomes clear: (i) |T(w)| is the w-
dependent gain, i.e., the factor by which fluctuations in the input 6 of the specific
frequency w are amplified in the output z; (i) arg T'(w) is the phase-shift between
the output and the input for fluctuations of the specific frequency w.

2.2. The population as a filter. If the input § combines different frequencies,
then some of these frequencies are suppressed in the output z while others are
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1(t)=sin(wt)
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FIGURE 2. The action of A : n — &.

amplified, and the phase-shift in the response is different for different frequencies
as well. The population thus acts as a filter on the input signal.

For small fluctuations in the input, the filter characteristics of the population are
given by the modulus and the argument of the transfer function. From equation
(8) we have

(12) T(w)| =

which is a decreasing function of |w|, i.e., high frequencies are suppressed, and so
the population acts as a low-pass filter.

A low-pass filter is characterized by its maximum gain (G,,) and the cutoff fre-
quency (w.). The latter defines the band width of the filter. The meaning of the
G and the w. becomes clear if we plot |T'(w)| against |w| on a double logarithmic
scale.
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FiGURE 3. The gain as a function of signal frequency.
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From equation (12) we get for small values of |w|

’aGf(j7 9_)’
(13 log T'(w) ~ log —————== =: log G\,
) PN TEN]
Moreover, for large values of |w| we get
(14) log |T(w)| ~ log|y.f(z,0)| — log |u]

The intersection of the two approximations gives us an explicit expression for the
cutoff frequency

From equation (8) we have

(16) arg T'(w) = arctan (ﬁ)

for the frequency-dependent phase shift.
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FI1GURE 4. Phase shift as a function of signal frequency.

For low frequencies |w| the phase-shift in the output signal is small, obviously
because the population has enough time to react to the changing input. Large
phase-shifts of maximally +7/2 occur at high frequencies of the input signal.

Since low-pass filters suppress high frequencies, the response x to a given input
0 is smoother than the input itself (see figure below). This smoothing effect of
the population is also immediately apparent from equation (6), reproduced here
in terms of z and 6,

t _
(17) x(t) — 7 = 0y f(x,0) / 0(r) — é)e(t_T)a”f(j’e)dT
It follows that whenever the input 7 is bounded and integrable (but not necessarily
differentiable or even continuous), the output ¢ is nonetheless always continuous
or even differentiable.
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F1GURE 5. The smoothing effect of a low-pass filter.

2.3. The logistic equation. We apply the above to the logistic equation
dx x

18 — = 0)=r(0 1— :

(18) = 100 =00 (1- 205

For constant § = § with () > 0, we have T = K (0) > 0 is stable. Expression (8),
for the transfer function, then gives

0)K'(0
(19) 1) = K0,
iw+1(0)
so that for the maximum gain we get
(20) G = |K'(@)].
for the cutoff frequency
(21) we = 1(0)
and for the frequency-dependent phase-shift
(22) arg T'(w) = — arctan adl
r(0)
Let € be the birthrate in the mechanism underpinning the logistic equation as
introduced in, respectively, sections 1.8 and 1.9. That is, we take § = b for

the mechanism in section 1.8 and # = « for the mechanism in section 1.9. For
comparison, the following table gives the maximum gain, cut-off frequency and
frequency-dependent phase-shift in terms of the model parameters.

0=0 0=a
(section 1.8) | (section 1.9)
G 2 28
m _ c 13_52
W 0—d Bog — 4
arg T'(w) | —arctan =2 | — arctan By
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The following figure shows how the maximum gain and the cut-off frequency de-
pend on the value of the average birthrate f. In particular, notice how the G,,
reacts differently to changes in average birth rate, depending on the underpinning
mechanism.
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FIGURE 6. Response of the population filter characteristics Gy, and
we to changes in the average birth rate # in mechanism I (section
1.8) and mechanism II (section 1.9).

A comparison of the effects of the death rates is more complicated, because the
different underlying mechanism incorporate different kinds of mortality: in section
1.8 individuals die randomly at a rate d and because of contests at a rate ¢, while
in section 1.9 individuals die as plants or seed at the rates v and ¢, respectively.
Ignoring these differences and referring to all of them simply as “death rates”, we
observe from the table that in the mechanism of section 1.8 both the maximum
gain and the cut-off frequency decrease as a function of the death rates, whereas
in mechanism of section 1.9 only bandwidth decreases, while the maximum gain
in fact increases as a function of the death rates.

This illustrates that a mechanistic underpinning of a model is necessary not only
to be able to meaningfully vary different model parameters, but also that differ-
ent mechanisms can give qualitatively different responses to changes in how the
population reacts to fluctuating parameters.



